
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

WEB BASED ROBOT SIMULATION USING VRML

Martin Rohrmeier

Innovation
IXOS Software AG
Pappenheimstraße 7

80335 Munich, Germany

ABSTRACT

The Virtual Reality Modeling Language (VRML) enables
the integration of interactive 3D graphics into the web. At
the German Aerospace Center we have been using the new
language in robotic applications from its beginning on. The
shown project is an example of the possibilities of using it
in web-based simulations. Specialized and expensive hard-
or software is not needed, any web browser with a vrml
viewer is able to run the program which makes the
application independent from any underlying hardware
platform. There was put a special attention to building an
efficient and usable interface for the standard pointing
device. The functionalities provided by the 3D GUI are
easy to use and internationalized because self-explaining
symbols were used instead of language. Together with Java
and VRML's External Authoring Interface (EAI) the
simulation can also be used for visualizing and
telemanipulating real robots which was the original
intention behind the development of this work.

1 INTRODUCTION

When talking of simulation applications one usually thinks
of large monolithic program packages that are installed on
a workstation to run stand-alone. When VRML 1.0 was
replaced by the more flexible VRML 2.0 it provided for the
first time the technology to build small but complex three
dimensional sceneries running in a web environment. At
this point, we started the project discussed here to evaluate
the possibilities of implementing a web-based simulation
and telemanipulation environment for industrial robots.

The simulation should benefit of all the strengths of
VRML. The result should be a platform independent
software that runs completely inside a web browser, it
therefore has to be small enough to be loaded from the web
server every time when needed. With the exception of the
VRML plugin no installation should be necessary. As the
complete user interface is also integrated into the
visualization area it also must benefit from the additional
152
degree of freedom and be more intuitive than existing
interfaces. As a severe restriction for a robotic application
the only possibility for user interaction in VRML worlds is
the use of the mouse. Because 6-DOF input devices cannot
be used, a way has to be found to enter position and
rotation values with the 2D pointing device.

For the telemanipulation of industrial robots a
connection must be somehow established between the
controlling workstation and the real manipulator. The most
comfortable way to access the values in a VRML scene is
via a java applet. Therefore, we can use the External
Authoring Interface (EAI) which can register an applet to
be notified when certain events occur and vice versa events
can be generated and sent to the virtual world.

2 IMPLEMENTATION

In this section, we describe details of the implementation.
First we will find an abstract description of the simulated
robot which is as abstract as possible to work with different
types of industrial manipulators. Based on this description
we will then implement a VRML object robot that
includes the complete functionality of the simulation. In a
last step we gain access to the simulation and build the
telemanipulation interface.

2.1 Defining the object robot

To define an abstract object, we need to determine the
input and output parameters as well as the properties
describing an instance of this object. To do this, we want to
have a short glance at robotics theory here.

An industrial robot is a tool to position a tool in a
limited working space. The tool is mounted at the end of its
movable arm and when speaking of the tool�s or robot�s
position we always refer to the origin of the tool coordinate
system. The robot arm consists of a set of linear or
rotational joints connected by the segments of the arm. The
different joints enable various degrees of freedoms (DOF)
which is a motion in a different direction to reach all points
5

Rohrmeier
in the usually three dimensional working space. Three
DOFs are necessary to reach any position in space and
three for the rotation, so to move freely in space the robot
needs at least six joints. As linear joints are not able to
change the orientation at least three of them must be
rotational joints. In this project we consider only robots
with six rotational joints, so called 6R-manipulators.
Though the approach is similar for other types. A robot can
be defined by Denavit-Hartenberg parameters. This set of
parameters describes the arrangement of joints and is the
basis for any kinematic calculation. There are four values
needed for every joint: a, d, α and θ. Additionally we
specify values for the minimum and the maximum of the
joint rotation: min and max. For a more detailed
introduction to robotics we recommend reading the
according literature. As they don�t change after the
instatiation of the robot object we can define a field of six
float values in VRML for each parameter.

The object can be manipulated by events. There are
two different possibilities in moving the robot arm to a new
position. Either the joint values can be set directly which
will affect the tool�s position and its rotation or more
probably we give a target position or a target rotation and
let the object calculate and set the according joint values.
The joint states are represented by a six dimensional vector
of value MFFloat and instead of a 3x4-matrix we will use
the VRML data types SFVec3f and SFRotation for
position and rotation values. When an eventIn is
received the changed values will be sent by eventOut
again. so the behavior of the object is as follows.

1. IN set_position > OUT joint_changed
2. IN set_rotation > OUT joint_changed
3. IN set_joint > OUT position_changed +
 OUT rotation_changed

In VRML syntax the prototype for the robot object can

be defined like shown below. The additional parameter arm
contains the URL to the VRML file for each segment.

PROTO Robot [
 eventIn SFVec3f set_position
 eventIn SFRotation set_rotation
 eventIn MFFloat set_joint

 eventOut SFVec3f position_changed
 eventOut SFRotation rotation_changed
 eventOut MFFloat joint_changed

 field MFFloat a [0,0,0,0,0,0]
 field MFFloat d [0,0,0,0,0,0]
 field MFFloat alpha [0,0,0,0,0,0]
 field MFFloat theta [0,0,0,0,0,0]
 field MFFloat min [0,0,0,0,0,0]
 field MFFloat max [0,0,0,0,0,0]
 field MFString arm []
]

15

2.2 Implementing the VRML Object Robot

The implementation task was divided up into three separate
problems: a visualization object to display the robot model
on the screen, a calculation object to convert position and
rotation into joint values with inverse kinematics and vice
versa and finally an interface that enables the user to move
the robot in 6 DOFs by using a default 2D pointing device
like the mouse. How data is transmitted between the
modules is shown below in Figure 1.

3
2

User Interface Visualization

Kinematic Calculations

joint
values

4
1

position
rotation

Figure 1: Data Flow Between Components

These three components are implemented as three
different VRML objects. In fact the complete robot object
consists of more than three components but these are the
essential ones and build together a fully functional
interactive robot model. We are now going to describe
these three modules beginning with the most interesting
one, the visualization component.

2.2.1 Visualization

This section describes how the 3D robot model is
structured in VRML. Each segment of the arm moves in a
coordinate system that is determined by the position of the
previous segments. This chain can be modeled by a tree of
nodes, where each segment node is a child of the previous
segment node. The distances for assembling the chain are
taken from the Denavit- Hartenberg parameters which also
have to be passed to the module. Note that it doesn�t need
to know any single position, every segment knows only the
according joint�s value. As shown in Figure 1, the input for
the VRML prototype rob_geo is an MFFloat array of
six joint values. When such an eventIn is received, a
script node is called that distributes the values among the
26

Rohrmeier

segments. Therefore a SFRotation eventOut is
generated and sent to the according joint, the incoming
arrow in Figure 2 illustrates this.

rotation

Jointi

Transform {
 translation T(0,0,di)
 rotation R(z,θi)

 CylinderSensor
 Transform {
 Rotation R(z,minθ..maxθ)

 Transform {
 translation T(ai,0,0)
 rotation R(x,αi)

 inline <<VRML Sources>>

 }
 }
}

Jointi+1

 ...

Figure 2: Structure of a Single Arm Segment in VRML

As one can see there is also a break with the data flow

model. Joint value control by grabbing the arm at any
segment and rotate the according joint which should be a
task of the user interface is better included directly in the
model because the tree is already existing here. The
generated events are directly routed to the joint and will
also be sent to the script which again writes the values into
an array. This array is the output of the rob_geo module.
The prototype is defined as follows.

PROTO rob_geo [
 eventIn MFFloat set_joint

 eventOut MFFloat joint_changed

 field MFFloat a [0,0,0,0,0,0]
 field MFFloat d [0,0,0,0,0,0]
 field MFFloat alpha [0,0,0,0,0,0]
 field MFFloat theta [0,0,0,0,0,0]
 field MFFloat min [0,0,0,0,0,0]
 field MFFloat max [0,0,0,0,0,0]
]

152
2.2.2 Kinematic Calculations

Almost every interaction with the model produces a lot of
calculations which are done by this component. For details
about how it works please read the according literature.
While mathematically quite complex its task is very easy.
Position and rotation have to be converted into joints and
joints have to be converted into positions and rotations. So
it contains two script nodes: one for the forward and one
for the inverse kinematics. Another script node receives the
module�s eventIns and calls the needed calculation
routine. All of these are based on the Denavit-Hartenberg
parameters. So rob_kin, the prototype of the module,
needs with the exception of the VRML descriptions all the
information of the Robot object and therefore has almost
the same definition.

PROTO rob_kin [
 eventIn SFVec3f set_position
 eventIn SFRotation set_rotation
 eventIn MFFloat set_joint

 eventOut SFVec3f position_changed
 eventOut SFRotation rotation_changed
 eventOut MFFloat joint_changed

 field MFFloat a [0,0,0,0,0,0]
 field MFFloat d [0,0,0,0,0,0]
 field MFFloat alpha [0,0,0,0,0,0]
 field MFFloat theta [0,0,0,0,0,0]
 field MFFloat min [0,0,0,0,0,0]
 field MFFloat max [0,0,0,0,0,0]
]

2.2.3 User Interface

The user interface is a collection of 3D elements with
sensors that allows the user to manipulate the robot in its
working space comfortably. No matter which of these is
used, the output is always a position and/or a rotation value
that is passed to the inverse kinematics subroutine. As the
given target point may be outside of the working space the
set position values are always sent back to the interface as
feedback. As no other variables are needed the prototype is
quite simple.

PROTO rob_ctrl [
 eventOut SFVec3f position_changed
 eventOut SFRotation rotation_changed

 eventIn SFVec3f set_position
 eventIn SFRotation set_rotation
]
7

Rohrmeier

Figure 3: A Screenshot of the VRML Simulation
3 CONCLUSION

With the VRML based simulation of industrial robots via
WWW some significant improvements towards known
solutions could be achieved. The very high level language
VRML can run on any underlying platform. The only
requirements for running the program is a web browser
with a plugin installed that is available for free. So there
are no costs for additional specialized hard- or software.
The completely three dimensional interface is mostly self-
explanatory and easy to use. This makes the program also
international because the functionality is indicated by signs
instead of text. Another plus is that the controller con
freely choose his viewpoint of the scenery. Although at the
moment a video stream transmitting the movements of the
real robot to the user is still needed, in the future a whole
virtual environment is possible which will drastically
reduce the required bandwidth for the telemanipulation.
Figure 3 shows a screenshot of the application.
15

REFERENCES

Carey R. and Bell G. 1997. The Annotated VRML 97

Reference Manual. Reading, MA: Addison-Wesley.
Craig, J.J. 1989. Introduction to Robotics. Reading, MA:

Addison-Wesley.
Rohrmeier, M. 1997. Telemanipulation von Robotern

mittels VRML 2.0 und Java. Master Thesis,
Department of Robotics and System Dynamics,
German Aerospace Center (DLR), Weßling, Germany.

Siegert H.-J. and Bocionek S. 1996. Robotik: Pro-
grammierung intelligenter Roboter. Berlin: Springer.

AUTHOR BIOGRAPHY

MARTIN ROHRMEIER is a project manager in the
Innovation department at IXOS Software AG. He received
his diploma in computer science at the Technical
University of Munich. The described project was his
master thesis at the German Aerospace Center (DLR). His
email address is <rohrmeier@web.de>.

28

