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ABSTRACT

Students are very interested in cutting-edge technologies like
virtual reality (VR), and VR has many potential uses in
education. However, building VR applications has proved
challenging due to both cost and technical skill barriers.
Through a series of experiments in “shoestring” VR, we
have developed methods of bringing an important facet of
VR, stereoscopic display, to our students in a simple, cost-
effective way. This paper describes our approach.

Categories and Subject Descriptors: 1.3.7 [Computer
Graphics|: Three-Dimensional Graphics and Realism

General Terms: Experimentation, Human Factors
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1. INTRODUCTION

Virtual reality (VR) technologies are becoming increas-
ingly popular in diverse arenas from scientific data analy-
sis to entertainment. An important facet of this technol-
ogy is the stereographic display of computer images to pro-
duce three-dimensional visual effects. Immersive VR envi-
ronments such as the CAVE [2] are exciting and incredibly
useful, but have remained out of reach for most educational
institutions.

We are interested in bringing aspects of virtual reality,
primarily true 3D visualization, into the classroom. The
possible uses of VR in education are virtually unlimited.
With VR, students can explore otherwise inaccessible envi-
ronments such as the surface of Mars or visualize abstrac-
tions like molecular models and magnetic fields. From the
perspective of computer science education, VR offers a very
attractive arena of application projects for our students to
tackle.

Given what VR has to offer, one might think that everyone
is doing VR, but this is not the case. The main barriers
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to VR have been the cost of equipment and the need for
considerable technical expertise for the undertaking. We
have been doing some experiments with “shoestring” VR.
Somewhat to our surprise, we discovered that eye-popping
stereoscopic visualizations can be produced using low-cost,
off-the-shelf hardware components and programs no more
complex than those written by CS1 students. The rest of
this paper outlines everything you need to know to get your
students started writing VR programs.

2. BACKGROUND

For those who may not be familiar with stereoscopic dis-
play possibilities, we offer a bit of background. Most hu-
mans see the world through two eyes. One of the main cues
that our brains use to gauge the distance to objects in our
field of vision is the difference in apparent position of the
object in the views obtained from the two eyes (parallax).
VR technologies take advantage of this by showing each eye
a slightly different view. If these two views are suitably
constructed, the viewer’s brain reconstructs a true three-
dimensional vista. The two keys to making this work are
producing the correct views for the left and right eyes and
delivering each view to the appropriate eye.

One way of getting stereoscopic display is to purchase a
special stereo graphics card. Externally, these cards have
a connection for LCD shutter glasses. The shutter glasses
alternately black out the left and right eye in quick suc-
cession. The alternation of eyes is synchronized with the
display screen so that the left eye sees one image and the
right sees another. Internally, stereo display is supported
by having separate drawing buffers for the left and right
eye. In order to support flicker-free animation, these cards
provide front and back buffers for both eyes, and hence are
often described as quad-buffered stereo cards. This method
of providing stereo display is also called active stereo.

Active techniques produce excellent stereo effects and are
generally used in high-end VR environments. Multi-viewer
displays are possible through the use of shutter glasses syn-
chronized by an infrared signal. Unfortunately, this is not
feasible in a classroom setting, as the required projector and
glasses are expensive and fragile.

As an alternative, most “mass-market” multi-viewer stereo-
scopic display systems employ passive stereoscopic techniques.
This is the technology used in 3D movie attractions often
found in amusement parks and science museums. Passive
stereo works by displaying the left and right eye images si-
multaneously superimposed on each other. Viewers wear
special filtering glasses that only allow the appropriate im-



age into each eye. The two most common passive methods
are anaglyph (red-blue) and polarized.

Anaglyph stereo uses color to filter the two eye images.
Typically, the left eye image is projected in red and the
right eye is either blue or cyan. Viewers wear glasses having
a red filter over the left eye and a blue filter over the right, so
that each eye only sees the intended image. Anaglyph stereo
is very easy to produce with no special equipment and can
be viewed on a computer monitor or from a projected image
using inexpensive cardboard glasses. The drawback is that
the scene is perceived in gray-scale; the original color is lost.
Also, since the eyes see the scene in competing colors, there
can be considerable viewing fatigue. If red and cyan filters
are used, there are techniques for adding some color back to
the images, but this cannot be done in a completely general
way.

A better stereo effect can be achieved using the polariza-
tion method. In this approach, the left and right images are
projected through filters that polarize the two views perpen-
dicular to each other (generally 45 and 135 degrees). The
superimposed images are then viewed through inexpensive
glasses with appropriate polarizing “lenses.” This approach
produces full color images and excellent stereo effects. The
downside is that it requires the images to be projected (not
viewed on a monitor).

3. SIMPLE PASSIVE STEREO

Our VR scheme uses the passive polarization technique.
The setup is very simple.We have put together a computer
cart containing a single CPU and two LCD projectors driven
by a dual-head graphics card. Our projector resolution is
1024x768, and the dual-head display is configured to pro-
vide one 2048x768 desktop. When a window is maximized
across this desktop, the left-half displays through one pro-
jector and the right-half through the other. We place an
external polarizer in front of each projector and view the
result through standard (polarized) 3D glasses. Projecting
a stereo image is then a simple matter of placing an appro-
priate view in each half of the window.

A number of groups have independently developed similar
approaches [1, 3]. Paul Bourke’s stereography website [1]
provides a wealth of good information and advice concerning
passive stereo display, but along the way we have discovered
some ways of simplifying the “textbook” approach.

3.1 Projector Type

A polarized passive stereo setup relies on separate pro-
jectors for left and right eye images. Although there have
been tremendous advances in data projector technology in
the last few years, good projectors are still relatively expen-
sive. Since one of the goals of our project is to keep costs
low, we were not excited about purchasing special projectors
to dedicate to our VR cart. Since most schools and busi-
nesses already own portable data projectors, we thought it
would be more cost effective to design a setup that could
use existing projectors in a non-dedicated way. The idea is
that, when you want to do VR, you just grab two portable
projectors, drop them on the cart and go.

One potential problem with this approach is that the vast
majority of current data projectors use LCD technology,
which itself relies on polarization properties of light. As
a result, LCD projectors emit light that is already polar-
ized. The conventional wisdom is that this type of projector
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should be avoided in a passive stereo setup. A better alter-
native would be to use DLP projectors, which do not emit
polarized light. Unfortunately we did not have any DLP
projectors on hand.

We decided to try some experiments with our LCD pro-
jectors to see exactly how the polarization would affect us.
At one point we even speculated that we might be able to
use the inherent polarization to our advantage by not having
to rely on external polarizers. When we tested our LCD pro-
jectors (various models of Sharp LCD projectors) we found
that the RGB components were polarized differently. Green
was at 90 degrees, while red and blue were at 180. While this
nixed our plan to avoid external polarizers, it meant that us-
ing external polarizers with the standard orientations 45-135
would be possible, albeit with a loss in brightness.

Our subsequent experience has demonstrated that with
modern LCD projectors, the loss in brightness from exter-
nal polarization is not really a problem. Even relatively
inexpensive projectors are now bright enough to be used in
a lit room. Despite the loss, our VR visualizations are still
bright enough to be easily viewed throughout a 40 student
classroom by dimming the lights.

Our initial experiments were conducted with projectors
having a maximum resolution of 800x600, and we found this
resolution quite adequate for effective 3D displays. With the
continual increase in modern display resolutions, it’s possi-
ble that your institution may be phasing out older projec-
tors that would be acceptable for a dedicated VR projection
cart. As noted above, we are currently using non-dedicated
1024x768 projectors with very good success.

3.2 Projector Placement

Projector placement involves some design considerations.
For best results, the two projectors should either be stacked
or placed next to each other with parallel lines of projection
to avoid any differential keystoning that would interfere with
the proper alignment of the images. Typically, the projec-
tors are stacked vertically using some sort of rigid custom
designed framing. Some higher-end projectors have lens-
shifting ability that allows the two images to be perfectly
aligned while maintaining parallel projection. This is the
optimal approach.

Another possibility for projectors with built-in keystone
adjustment is to align the projection centers of the two im-
ages and then use the vertical keystone adjustment to align
the edges of the images. A third approach is to simply keep
the projectors parallel and only use the overlapping region
for a cinemascope effect. In this case, the viewports of the
images need to be adjusted in the viewing software so that
they align properly.

Ultimately, none of the above schemes seemed most ap-
propriate for our situation for two reasons. First our goal
was to throw together an experimental setup quickly and
with a minimum of fuss. Having to build a stacking appa-
ratus was just another barrier. Second, since our projectors
are not dedicated to the cart, sliding them in and out of a
custom frame and having to deal with constant realignment
did not seem appealing.

We decided to simply set the two projectors side-by-side
and align their centers for maximum overlap. Our initial
thought was that we could then build horizontal keystone
correction directly into our VR software. As it turns out, we
have not bothered with this because our experiments have



shown it unnecessary for our run-of-the-mill visualization
needs. We were frankly surprised to find that the human
visual mechanism apparently has considerable tolerance for
noise in the alignment of the left and right eye images, at
least when that noise is small and systematic as in the case
of our horizontal keystoning distortions.

Our projectors have a built-in test pattern that can be
turned on for adjustment of vertical keystoning. When we
set the projectors on the cart, we simply turn on the test pat-
tern and align the centers of the grid as carefully as possible
so that images near the center are almost perfectly aligned.
Horizontal keystoning distortion in this “sweet spot” is nom-
inal but grows toward the corners of the display. If your
projectors support zooming (ours do), the amount of key-
stone distortion can be reduced to some extent by moving
the projectors farther from the screen and then reducing the
projection size to fit. This reduces the amount of “toe-in”
needed to align the centers, hence reducing keystoning.

Even being fairly cavalier about the projector alignment,
we have not found the keystone distortion to be distract-
ing. Part of this is because our visualizations tend to be
centered in the frame, thus projecting into the area of least
distortion. When we have full-width images, we use a cin-
emascope aspect ratio so the scene goes edge-to-edge but
avoids pressing into the corners of the display. Using this
technique full-width images such as 3D pictures from the
Mars lander look great out to the very edge, and there is no
discernible distortion or ill-effect from the slight keystoning.

3.3 Screen Considerations

For polarized passive stereo it is necessary to project onto
a screen that preserves the polarization of light. Standard
white projection screens will not work. What is needed is
one of the higher quality “silver” screens. Portable silver
screens are available from various 3D supply houses (e.g.,
Reel3D), however they tend to be more expensive than reg-
ular screens.We have a portable silver screen for use with our
VR cart, but we have also developed a simple, inexpensive
alternative.

Ordinary metallic spray paint (aluminum- or zinc- based)
can be used to create a nice polarization preserving projec-
tion surface. This paint can be sprayed on cardboard for
a very light screen or on a sheet of masonite or plywood
for use in a more permanent setting. The current VR lab
where our cart is stored employs a spray-painted masonite
screen (total cost around $10). Before that, we used a room
where we had simply spray-painted a rectangular region on
the wall to serve as our screen. Both of these approaches
gave results that equaled or exceeded the quality of picture
on our portable silver screen.

3.4 GraphicsCards

The only special consideration for the graphics card is
that it be a dual-head card to provide output to the two
projectors. We initially used a Matrox G450 which can be
purchased for less than $100. This worked very well, but
we have since switched to an NVIDIA card because it has
better accelerated OpenGL support under Linux. The main
consideration in choosing a graphics card is driver support.
After that, you can spend more for accelerated performance.
We want to emphasize, however, there is no need to invest in
one of the high-end quad-buffered stereo cards. The passive
setup does not require this specialized stereo machinery.

350

3.5 3D Glassesand Polarizers

Polarized 3D viewing glasses can be purchased from sci-
entific supply firms such as Edmund Optics or 3D outfitters
such as Reel3D. Cardboard glasses with the standard 45/135
degree polarizers are available for as little as $0.40 per pair
even in small lots.

The polarization of the left and right eye images from
the projectors to match the glasses is accomplished with
external polarizers. For our initial experiments we used in-
expensive polarizing polymer sheets similar to those used in
3D glasses. Such polarizers are common equipment around
physics and optics labs and can be purchased from scientific
supply or 3D outfitters. The latter provide pre-cut square
polarizers for around $30 a pair that are oriented in the
standard 45 degree inclination, which makes them very con-
venient for aligning with the glasses.

We initially mounted our polarizers in simple cylindrical
collars made of light cardboard that fit over the projector
lens. This was cheap and easy, but we ultimately rejected
this approach because the projector lenses turned when the
projectors were focused and it was awkward to set up the
projectors, put on the filters and get the polarizers properly
aligned with the glasses. A better approach is to affix the
polarizers directly to a board on the projection cart so that
they are always in place and properly oriented. A a bare-
bones approach is to simply put a lump of putty in front of
each projector and stand the polarizer in it.

One problem that we encountered with the polymer film
polarizers is that prolonged exposure to the projection beam
resulted in thermal damage (warping and bubbling) to the
film. This produced distortion that grew severe after tens of
hours of use, and the polarizers would have to be replaced.
A more durable solution was found by using glass-sandwich
style polarizers. Large aperture (50mm) flat-spectrum po-
larizers are available from Edmund Scientific for under $35
apiece. Mounting hardware (holders and posts) for the po-
larizers cost about $70 per projector,resulting in a total op-
tics cost around $200.

3.6 Hardware Summary

The bottom-line is that it takes very little investment in
hardware to build an effective passive-stereo VR cart. If you
have a suitable pair of projectors and a computer available,
the necessary extras (glasses, polarizers, dual-head card and
screen) can be purchased for less than $150 for a bare-bones
experimental setup. Using higher-quality optics approxi-
mately doubles that figure. Hardware costs need not be
a barrier to bringing VR into your classroom.

4. BUILDING VR APPLICATIONS

Having the equipment for stereo display is half the battle,
but you also need to acquire or develop stereoscopic applica-
tions. Even a special stereo graphics card cannot automati-
cally generate a stereo view from a standard 3D application.
The software must be designed to generate and display the
appropriate left and right eye views. Many existing packages
designed for visualization include an option for stereo, but
usually this is a mode that exploits a quad-buffered stereo
card with shutter glasses and would not be useful for our
passive display. Of course one of the main reasons we put
our cart together was to provide our students with a plat-
form for developing VR applications. So we were eager to
start rolling our own software.



4.1 Choosing a Language

Generally, graphics applications are developed using lan-
guages like C/C++ that are very efficient and suitable for
hardware-level manipulations. However, the trend toward
hardware-accelerated 3D support in commodity-grade graph-
ics cards opens up other options. Very high level languages
can be used to construct applications with the heavy calcu-
lations carried out at the hardware level (or at least with
calls to pre-compiled C functions).

In our experiments, we have had very good success using
Python [7]. Python is a very high-level, interpreted language
that is perfect for quick experimentation and rapid proto-
typing. A number of freely available contributed modules
for Python make it a wonderful language for VR. The Py-
OpenGL package [6] allows access to the underlying graph-
ics hardware for fast 3D rendering, the imaging library [8] is
useful for manipulation and display of paired stereo images,
while the Numeric package [4] provides high-performance
numerical routines and matrix operations.

Python was a natural choice for our students, because it
is also the language that we use in CS1. Our point here is
not that everyone should use Python (that’s another paper),
but simply that your students don’t have to be C++ gurus
to write effective VR demonstrations.

4.2 Generating Stereo Pairs

For students with some background in computer graphics,
generating stereo views should be relatively easy, but there
are a couple subtleties that need to be taken into account to
do the job well. Paul Bourke’s web page [1] contains lucid
tutorials on how to generate good stereo views. Here we will
just present some highlights.

Obviously, the main idea of stereo viewing is to generate
two views of a scene, one from each eye position. Gener-
ally, the position of the eyes is specified in terms of an eye-
separation parameter. Any program that produces images
from a 3D model can be used to generate static stereo pairs.
For example, one could use the popular ray-tracing package
POV-Ray [5] and generate two views of a scene from camera
positions adjusted according to the eye-separation value.

Unfortunately, just pointing the viewing camera at the
same point in a scene from two different positions (the “toe-
in” approach) does not generate the best stereo effect. The
problem is that the viewing plane onto which the 3D view
is projected is usually assumed to be orthogonal to the view
direction. Viewing toward the same center point from two
different positions produces images that are projected into
two different planes. Figure 1 depicts the situation.

left eye

right eye

S

viewplanes

Figure 1: Viewing a point in a scene from two differ-
ent camera positions produces differing view planes.
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A better way to generate stereo pairs is to have the two
eyes look at points in the scene that are eye-separation dis-
tance apart. Using this method, the view-direction vectors

left eye

right eye

viewplane

Figure 2: Using parallel (symmetric) views produces
a single view plane, but images must be trimmed to
area of overlap.

are parallel, and hence, the images lie in the same viewplane.
However when the rendering application is not stereo aware,
the resulting images must be subsequently “trimmed” to the
area of actual view overlap. See Figure 2.

4.3 Using OpenGL

A lower-level approach is to actually write stereo render-
ing code using a graphics API such as OpenGL. OpenGL
does not restrict the viewing frustum to be symmetric, so it
is relatively easy to generate view-parallel left and right eye
images as shown in Figure 3.

left eye

right eye

viewplane

Figure 3: The “correct” approach using parallel
views and asymmetric view frustums produces a sin-
gle viewplane and overlapped image.

The OpenGL function glFrustum(left, right, bottom,
top, near, far) can be used to set an appropriate pro-
jection matrix for a standard perspective projection. In
OpenGL, the camera is placed on the positive z axis look-
ing in the negative z direction. In this call, left and right
specify the minimum and maximum x coordinates for the
view, and bottom and top do the same for y. The values of
near and far are the distance to the near and far clipping
planes, respectively.

Generally, the code to compute a perspective projection
with a symmetric frustum looks something like this:

top = near * tan(fov/2.0)
right = aspect * top
glFrustum(-right, right, -top, top, near, far)



In this example fov specifies the field of vision (in radians)
and aspect is the aspect ratio of the display.

Modifying this code for stereo is simply a matter of mov-
ing the left and right boundaries in a way appropriate for
the given eye:

off = eyeSeparation / 2.0 * (near / focallLength)

glFrustum(-right+off, right+off, -top, top, near, far)

The focalLength variable specifies how far away the view-
ing plane is. Objects that are closer than focalLength will
appear to float in front of the screen while those farther away
will appear to be behind the screen.

All that remains is to ensure that the model-view trans-
formation is set up so that the eyes look at appropriately
offset centers. Here is one approach using the gluLookAt
function.

viewpoint = viewpoint - right*eyeOffset

center center - right*eyeOffset

gluLookAt (viewpoint [X], viewpoint[Y], viewpoint[Z],
center[X], center[Y], center[Z],

up[X], uplY], uplZ])

In this code viewpoint is the vector specifying where the
camera sits, center is the point the camera is looking at,
and right is a unit vector specifying the direction going
right from the camera. This code simply shifts both the
viewpoint and the center of the scene and then uses the
gluLookAt call to set the model-view transformation.

4.4 Stereo VR Without Graphics

Of course, many of our students do not have graphics
programming experience, and we wanted a way for them to
also get involved with VR applications. To this end we were
very interested in the VPython visualization package [10].
VPython is a Python extension that makes 3D modeling
simple enough to be included in CS1 [9].

VPython provides a basic set of 3D modeling objects like
sphere, cone, box etc. that a program can create and manip-
ulate. For example, the following (slightly modified) code
from a VPython demo draws a red ball bouncing up and
down on a blue floor.

from visual import *
floor = box(length=4, height=0.5,
width=4, color=color.blue)

ball = sphere(pos=(0,4,0), color=color.red)
ball.velocity = vector(0,-1,0)
dt = 0.01
while True:

ball.pos = ball.pos + ball.velocityx*dt

if ball.y < 1: ball.velocity.y = -ball.velocity.y

else: ball.velocity.y = ball.velocity.y - 9.8%dt

When the program is run, VPython pops up a window
and displays the scene of a ball bouncing up and down. The
user is able to zoom in and out and rotate the scene using the
mouse. Notice that this is all accomplished without having
to know anything at all about graphics. VPython frees up
programmers to write simulations, while it takes care of the
visualization task.

VPython is written as a C++ extension for Python that
uses OpenGL as its rendering engine. When we started using
it, it contained a rudimentary mode for active stereo cards.
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One of the authors modified this package to support both
active and passive stereo viewing modes, and these changes
have now been incorporated into the VPython distribution.

Stereo viewing is controlled in VPython through two pa-
rameters: stereo can be set to either "active" or "passive",
and stereodepth is used to set the scaled focal length. By
default, stereodepth is 0.0, and the entire scene appears
behind the screen. Setting the depth to 1.0 puts the center
of the scene at the screen boundary and setting the value
to 2.0 puts the scene entirely in front of the screen. Values
in-between can also be used. Changing the bouncing ball
demonstration for use on our VR cart is as simple as adding
just a couple lines of code at the top of the program:

scene.stereo=’passive’
scene.fullscreen=True

VR doesn’t get much easier than this!

5. CONCLUSION

We have demonstrated a simple, low-cost technique for
bringing VR involving stereoscopic display into the class-
room. With a combination of inexpensive hardware and
simple-to-use software you and your students can also enjoy
the excitement of programming eye-popping 3D visualiza-
tions.
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