Away3D 3.6

Essentials

Take Flash to the next dimension by creating detailed, animated,
and interactive 3D worlds with Away3D

Away3D 3.6 Essentials

Take Flash to the next dimension by creating detailed,
animated, and interactive 3D worlds with Away3D

Matthew Casperson

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

http://www.zshareall.com

Away3D 3.6 Essentials

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2011
Production Reference: 1190111

Published by Packt Publishing Ltd
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849512-06-0

www . packtpub.com

Cover Image by John M. Quick (john.m.quicke@gmail . com)

Credits

Author
Matthew Casperson

Reviewers
Todsaporn Banjerdkit

Tony Lukasavage

Jerome Maurey-Delaunay

Acquisition Editor
Eleanor Duffy

Development Editor
Maitreya Bhakal

Technical Editor
Manasi Poonthottam

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Leena Purkait

Proofreader
Ting Baker

Graphics
Nilesh Mohite

Production Coordinator

Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Matthew Casperson has worked in IT for nearly a decade in a variety of roles,
including development and support. In his spare time, he loves nothing more than
to experiment with the latest Web and multimedia technologies. Many of these
experiments can be found on Matthew's personal website at http://goo.gl/2Hgr.

Away3D 3.6 Essentials is Matthew's first book, but hopefully won't be the last!

Credit has to be given to the amazing team behind Away3D. They
have produced an incredible library, and I'm continually amazed at
how they push the boundaries of the Flash platform.

http://www.zshareall.com

About the Reviewers

Todsaporn Banjerdkit, also known as "Katopz", started with Flash ActionScript
in 1999 and it was love at first sight. His hobby as an ActionScript coder turned into
a full-time job at a worldwide advertising company in Thailand.

He enjoys building Web experiences and casual Flash games. He also joined Away3D
and JigLibFlash as a core developer member, mainly handling Away3DLite. Joining
an open source community brought him great opportunities. He has met developers
and made lots of friends around the world because of to it.

When not coding, he enjoys designing 3D model characters as a hobby.

Thanks to my mom (Germgai), my girlfriend (Faiiz), and my cats
(Pignoom and Kabmoo)!

Tony Lukasavage graduated with a Computer Science and Engineering degree
from Bucknell University in 2002, and since then has become a coding Swiss Army
knife, constantly engaging in exciting projects. Ranging from journeyman to expert
in an array of computer languages, he avoided becoming a single language zealot
and prefers to choose the right tool for the job. Language-agnostic concepts and
object-oriented design are his specialties.

Tony is currently developing health system applications, including medical imaging
and transfer in AS3 and service-oriented architecture in C#. In addition, he regularly
submits demos and code for Away3D, ActionScript3, graphics, Android mobile
development, and anything else that catches his eye. See his developer's blog:
http://savagelook.com/blog.

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[@ PACKTL 1

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Building Your First Away3D Application 7
Choosing between Away3D for Flash Player 9 or Flash Player 10 7
Downloading Away3D 8
Downloading the source ZIP file 8
Downloading the source using SVN 9
Using TortoiseSVN 9
Creating an empty project for Away3D 10
Adobe Flex Builder or Flash Builder 10
FlashDevelop 10
Adobe Flash CS4 11
Targeting the Flash Player 10 runtime 13
Adobe Flex Builder and Adobe Flash Builder 13
FlashDevelop 15
Adobe Flash CS4 17
Creating the initial application 18
Running Away3DTemplate 21
Adobe Flex Builder and Adobe Flash Builder 21
FlashDevelop 22
Adobe Flash CS4 23
The end result 24
Positioning objects in a 3D scene 25
Extending Away3DTemplate to populate the scene 26
Running SphereDemo 28
Adobe Flex and Adobe Flash Builder 28
FlashDevelop 28
Adobe Flash CS4 28
The end result 29
Summary 29

Table of Contents

Chapter 2: Creating and Displaying Primitives 31
The basic elements of a 3D object 31
Vertices 32
Triangle faces 32
Sprite3D 35
Segments 38
UV coordinates 38
Creating primitive 3D objects 39
Common init object properties 45
Cone 46
Cube 47
Cylinder 51
Geodesic sphere 52
Grid plane 54
LineSegment 56
Plane 57
RegularPolygon 58
RoundedCube 59
SeaTurtle 60
Skybox 62
Skybox6 63
Sphere 64
Torus 66
Triangle 67
Trident 68
Summary 69
Chapter 3: Moving Objects 71
Global, parent, and local coordinate systems 71
World space 72
Parent space 73
Local space 75
Transformation functions / properties and their coordinate systems 78
Modifying position 79
The x, y, and z properties 79
The position property 80
The move functions 80
The moveTo() function 81
Modifying rotation 82
The rotation init object parameters 82

The rotation properties 83

Lii]

Table of Contents

The rotateTo() function 83
The eulers property 84
The rotate() function 84
The lookAt() function 84
The pivotPoint property 85
The movePivot() function 86
The scenePivotPoint property 87
The pitch(), roll(), and yaw() functions 87
Modifying scale 88
The scale init object parameter 88
The scale() function 88
The scaleX, scaleY, and scaleZ properties 88
Modifying the transform 89
Tweening 89
Nesting 92
Summary 97
Chapter 4: Z-Sorting 99
The painter's algorithm 100
Sorting the scene 100
Adjusting the sorting order 103
The pushfront and pushback properties 103
The screenZOffset property 104
The ownCanvas property 106
A note about Z-Sorting 107
Additional renderers 108
Summary 116
Chapter 5: Materials 117
The difference between textures and materials 117
Resource management 118
Defining colors in Away3D 119
By integer 119
By string 120
Pixel Bender 121
Lights and materials 122
Shading techniques 123
Texture mapping 123
Normal mapping 124
Environment mapping 125
Flat shading 126
Phong shading 126

[iii]

http://www.zshareall.com

Table of Contents

Applying materials 127
Basic materials 137
WireColorMaterial 137
WireframeMaterial 139
ColorMaterial 140
Bitmap materials 141
BitmapMaterial 141
TransformBitmapMaterial 143
Animated materials 145
MovieMaterial 145
AnimatedBitmapMaterial 146
Interactive MovieMaterial 148
Composite materials 149
DepthBitmapMaterial 149
EnviroBitmapMaterial 151
EnviroColorMaterial 153
Light materials 154
WhiteShadingBitmapMaterial 154
ShadingColorMaterial 155
PhongBitmapMaterial 157
PhongColorMaterial 158
PhongMovieMaterial 159
Dot3BitmapMaterial 160
Pixel Bender materials 161
Dot3BitmapMaterialF10 161
PhongPBMaterial 162
PhongMultiPassMaterial 164
FresnelPBMaterial 165
CubicEnvMapPBMaterial 167
Loading textures from external files 168
BitmapFileMaterial 169
Using the TextureLoadQueue 169
Summary 172
Chapter 6: Models and Animations 173
3D formats supported by Away3D 174
Exporting 3D models 174
Exporting from 3ds Max 175
Exporting from MilkShape 176
Exporting from Sketch-Up 176
Exporting from Blender 177

A note about the Collada exporters 178
Loading a 3D model 179
Animated models 180
MD2—Loading an embedded file 180
Static models 190

[iv]

Table of Contents

The problem with init and Init objects 202
Converting a loaded model to an ActionScript class 204
Summary 206
Chapter 7: Cameras 207
The properties of a camera 208
Camera lenses 209
ZoomFocuslLens and PerspectivelLens classes 210
SphericallLens class 210
OrthogonallLens class 212
Camera classes 212
Target camera 219
Hover camera 220
Spring camera 223
Summary 224
Chapter 8: Mouse Interactivity 225
Away3D mouse events 225
The difference between ROLL_OVER /ROLL_OUT and
MOUSE_OVER / MOUSE_OUT 227
Projecting the mouse position into the scene 231
Summary 240
Chapter 9: Special Effects with Sprites 241
Using the Sprite3D class 242
Using the DirectionalSprite class 245
Using the DepthOfFieldSprite class 251
Using a particle system 255
Creating the Away3D Stardust initializer 256
Creating the Away3D Stardust particle renderer 258
Creating the Stardust emitter 261
Putting it all together 265
Summary 267
Chapter 10: Creating 3D Text 269
Embedding fonts 270
Displaying text in the scene 271
3D Text materials 273
Extruding 3D text 274
Warping 3D text 277
Summary 285

[v]

Table of Contents

Chapter 11: Extrusions and Modifiers 287
Creating a flag with the PathExtrusion class 288
Creating walls with the LinearExtrusion class 291
Creating a vase with the LatheExtrusion class 293
Creating terrain with the SkinExtrusion class 297
Reading the height of a terrain surface with the

ElevationReader class 302
HeightMapModifier 306
Summary 310
Chapter 12: Filters and Postprocessing Effects 311
Flash and Away3D filters 312
The Flash filters 312
Applying filters 312
Applying the BlurFilter 317
Applying the DisplacementMapFilter 318
Applying the GlowFilter 319
Applying Pixel Bender shaders 320
Applying filters to the view 321
Away3D filters 322
Render Sessions 326
Postprocessing with the BitmapRenderSession 327
Summary 333
Chapter 13: Performance Tips 335
Determining the current frame rate 335
Setting the maximum frame rate 337
Setting Flash quality to low 338
Reducing the size of the viewport 339
Scaling the viewport output 340
Triangle caching 341
Level of detail models 345
Away3D filters 348
ZDepthFilter 348
MaxPolyFilter 348
Offscreen rendering 349
Model formats 360
Summary 368

Index 369

[vi]

Preface

Away3D is one of the most popular real-time 3D engines available for Flash,
allowing for the creation of a wide range of 3D applications, including visualizing
detailed 3D environments, displaying animated 3D models, creating 3D text, and
showing off a huge variety of special effects. With Away3D, a little ActionScript,
and a big imagination the possibilities are endless.

This book will guide you through the various features available in Away3D,
demonstrating the possibilities it opens up for the Flash platform. With practical
examples and some real-world tips, you will be up and running with Away3D
in no time.

Starting with the very basics, this book will walk you through creating your first
Away3D application by downloading the Away3D source code and using it from
within a number of authoring tools like Flex Builder, Flash Builder, FlashDevelop,
and Flash CS4. Next, you ease your way through creating your first primitive 3D
objects from scratch, then move on to creating stunning 3D environments with
incredibly detailed textures and animations. You will learn how to make your
applications react to the user, learn ways to focus your camera and view your 3D
scene from any angle, and then take your Away3D application to the next level with
a number of optimization techniques that allow you to obtain the best performance
from Away3D, without compromising on visual appeal.

From displaying a simple sphere through to creating entire 3D cities, this book
will show you the steps you need to follow, with plenty of tips to help you avoid
common pitfalls.

Preface

What this book covers

Chapter 1, Building Your First Away3D Application, which will show you how to create
your first Away3D application using a variety of IDEs, including Flex Builder, Flash
Builder, FlashDevelop, and Flash CS4.

Chapter 2, Creating and Displaying Primitives, where you will explore the various
primitive 3D objects available in Away3D.

Chapter 3, Moving Objects, which shows you how to move, rotate, and scale 3D objects
within the scene, either directly or through the TweenLite library.

Chapter 4, Z-Sorting, which explores the tricks that can be employed to solve sorting
and rendering issues that can arise in Away3D applications.

Chapter 5, Materials, which takes a look at the various materials that are included
in Away3D, from basic materials that display a single color, right through to those
materials that make use of the advanced Pixel Bender platform. Lighting is also
covered in this chapter.

Chapter 6, Models and Animations, where you will learn how to load and display both
static and animated 3D models created in external 3D modeling applications.

Chapter 7, Cameras, which explores the various properties that affect how the scene is
viewed, as well as demonstrating the camera classes available in Away3D that allow
you to easily track and view the 3D objects in your scene.

Chapter 8, Mouse Interactivity, where you will learn how to respond to the mouse in
order to create interactive 3D applications that are easy and natural to use.

Chapter 9, Special Effects with Sprites, where a number of special effects are
demonstrated, including integration with the Stardust particle engine.

Chapter 10, Creating 3D Text, which shows you how to create and manipulate 3D text.

Chapter 11, Extrusions and Modifiers, which explores how complex 3D objects can be
created directly by Away3D without the aid of an external 3D modeling application.

Chapter 12, Filters and Postprocessing Effects, which will show you how to add exciting
visual effects to your Away3D applications.

Chapter 13, Performance Tips, where you will learn how to optimize your Away3D
applications, which will allow you to create spectacular 3D environments while
maintaining a high level of performance.

[2]

http://www.zshareall.com

Preface

What you need for this book

Anyone looking to build engaging, interactive, and eye-catching websites or
addictive 3D games will appreciate the power of Away3D, and this book will
provide all the information that is needed to harness that power. All you need

is an Internet connection to download Away3D, and an ActionScript IDE such as
Flex/Flash Builder, Flash CS4, or Flash Develop, which is free to download and use.

Who this book is for

This book is meant for beginners as well as experienced Flash developers who are
looking to create 3D applications in Flash using the Away3D engine. Whether you
are using Away3D for the first time or are a seasoned developer, this book will
provide you with a solid foundation in taking Flash to the next dimension. It can
also be used as a reference guide by Flash developers who are already familiar
with Away3D.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "By extending the Away3DTemplate class,
we have created a simple 3D application with the SphereDemo class using only a few
lines of code."

A block of code is set as follows:

import away3d.core.base.Object3D;

import away3d.primitives.Cone;

import away3d.primitives.Cube;

import away3d.primitives.Cylinder;
import away3d.primitives.GeodesicSphere;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In order
to use the TweenLite library it has to be added to the Source path in Flex/Flash
Builder and Flash CS4, or the Project Classpaths in FlashDevelop".

[31]

Preface

Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www . packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book

K You can download the example code files for all Packt books you have
Q purchased from your account at http: //www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Building Your First Away3D
Application

Creating your first Away3D application can be a daunting task due to the number
of steps that have to be completed before even a single line of code is written.
This chapter will walk you through the steps required to get your first Away3D
application up and running,.

This chapter covers the following topics:

o The different Away3D versions

¢ Downloading Away3D

e Configuring your development environment

e An overview of the concepts used by Away3D
e Creating a simple application

e Compiling the application with your chosen authoring tool

Choosing between Away3D for Flash
Player 9 or Flash Player 10

Flash Player 10 was released by Adobe in 2008, and it brought with it a number of
performance improvements and additional features that greatly benefit 3D engines
like Away3D. However, these features are not backwards compatible, which means
that a Flash application that targets Flash Player 10 will not run on Flash Player 9.
To accommodate both Flash Player 9 and 10, Away3D maintains two versions of the
engine: Away3D version 2.x, which targets Flash Player 9, and Away3D version 3.x,
which targets Flash Player 10.

http://www.zshareall.com

Building Your First Away3D Application

When Flash Player 10 was initially released, developers had good reason to support
the older version Flash Player 9, because the percentage of devices with Flash Player
10 installed was relatively small. At the time of writing though Flash Player 10 is
installed on over 90% of internet-enabled devices. You can view the current statistics
on the Adobe website at http://www.adobe.com/products/player census/
flashplayer/version penetration.html.

Given the significant market penetration of Flash Player 10, and the additional
performance and features provided by the Flash Player 10 version of Away3D,
this book will focus on Away3D version 3.x.

Downloading Away3D

Away3D can be downloaded from two different locations. The first location is the
download page on the Away3D website at http://away3d.com/downloads. Here
you will find links to ZIP files for the stable releases of the Away3D engine. These
releases have been tested and are deemed to be of a high enough quality to be used
in production.

The second location that Away3D can be downloaded from is the SVN repository
hosted on Google Code at http://code.google.com/p/away3d/. The code in the
SVN repository represents the current, up-to-the-minute state of Away3D. Using this
code gives you access to the latest features and bug fixes that have not yet made their
way into a stable release. However, this code is still in the process of being tested,

so is generally not recommended for everyday use.

Downloading the source ZIP file

Unless otherwise stated, all the examples in this book have been compiled against
Away3D version 3.6, which is the latest stable release at the time of writing. This file
can be downloaded from the Away3D website at http://away3d.com/downloads
or by using the direct link http://away3d.com/download/away3d_3_6_0.zip. If
you are downloading the ZIP file from the download page, click on the Flash 10 link
under the heading Version 2.6.0/ 3.6.0.

Away3D is a very active project, with new releases made every few
months. It is possible that by the time you are reading this, the download

Ry page or direct link has been changed from what has been described
Q above. If that is the case you can download away3d_3_6_0.zip from
the Packt website.

The examples presented in this book may work with later versions of the
Away3D engine, but using version 3.6 will guarantee compatibility.

[8]

Chapter 1

Once you have downloaded the ZIP file, you will need to extract it to a convenient
location somewhere on your computer. Remember this location, because you will
reference it later when you set up your development environment.

Downloading the source using SVN

SVN provides a convenient way to get access to the very latest version of Away3D,
and tools, such as TortoiseSVN, make accessing the Away3D SVN repository a
straightforward process.

Using TortoiseSVN

TortoiseSVN is a popular and free SVN client that integrates with Windows Explorer
to provide easy access to SVN repositories. Use the following steps to download and
install TortoiseSVN, and then use it to download the Away3D source code:

1. Download TortoiseSVN from http://tortoisesvn.net/downloads.

2. Install TortoiseSVN using the default settings, and reboot your computer.

3. Once your computer has booted back up, create a new folder in a convenient
location that will be used to contain the Away3D source code. For simplicity,
you may want to consider creating a folder called Away3D in the root folder
of drive C.

4. Right-click on your new folder and click on the SVN Checkout option.

5. You will be presented with the Checkout dialog box. Enter

http://away3d.googlecode.com/svn/trunk/fpl0/Away3D/src
into the URL of repository textbox.

%" Checkout (=3

Repository
URL of repository:

& | http:faway3d. googlecode, comfsvnftrunk/fpl0fdway3Dfsrc * |

: o]
Checkout directary: -
n

CiAwmay3h

Checkout Depth

|Fully recursive - |

Omik externals

Revision

@ HEAD revision
Revision Show lag

[(o] 4] | Cancel | | Help |

6. Click on the OK button to download the Away3D files.

[o]

Building Your First Away3D Application

Creating an empty project for Away3D

In order to create an Away3D application, you first need to create and configure a
project within your authoring tool. In addition, to make use of Away3D engine the
new project will have to be configured so that it can access the Away3D source code.

Adobe Flex Builder or Flash Builder

The following steps show you how to create a new project in Flash and Flex Builder
that uses the Away3D library:

Open up Adobe Flex and click File | New | ActionScript project.

2. You will now be asked to Specify the location of the files in the new project.
Type the name of the project in the Project name textbox and click on the
Next button.

3. You will now be asked to Set the build paths for the new ActionScript
Project. Under the Source Path tab, click on the Add Folder button.

4. Click on the Browse button to select to the location where you saved the
Away3D source code, or type it directly into the textbox.

5. With the Away3D source code folder selected, click on the OK button.

The Away3D source code directory is now listed in the Source Path list. Click
on the Finish button to create the project.

FlashDevelop

FlashDevelop is a free Integrated Development Environment, or IDE, that can be
used to create Flash applications. When used in conjunction with the Flex SDK,
which is also free, FlashDevelop can be used to write and compile Flash applications.
FlashDevelop can be found on its website at http: //www.flashdevelop.org.

The following steps show you how to create a new project in FlashDevelop that uses
the Away3D library:

1. Open FlashDevelop and click Project | New Project....

2. Select AS3 Project from the ActionScript 3 group in the Installed Templates
list. Type a name for the project in the Name textbox, and specify a location
for the project in the Location textbox. Enabling the Create directory for
project checkbox will create a subdirectory for the project in the Location
directory. Click on the OK button to create the project.

[10]

Chapter 1

Mew Project

Installed Templates
ActionScript 3

! Flex 3 Project

! AIR AS3 Projectar

1 AIR Flex 3 Projector
| Empty Project
ActionScript 2

! Flash IDE Project

! ASZ Project

! Custom Preloader

& project writken in ActionScript 3 For the Flash 9710 Player

m

Mane: Baaysh
Location: (f:'l,AwaySD—FllashDevelop

Package:

(5 V| Create direckary For project]

Will create; CAway3D-FlashDevelopyiway 3Dt dway3h, as3proj

Erowse. ., |

{not supported in all projects)

l

OF; J| Cancel |

3. Click Project | Properties....

Click on the Classpaths tab, and click the Add Classpath... button.

5. Browse to the location where you saved the Away3D source code and click

on the OK button.

6. The Away3D source code directory is now listed in the Project Classpaths
list (note that FlashDevelop uses relative paths for the classpath entries
that exist on the same drive as the project). Click on the OK button to save

the changes.

Adobe Flash CS4

Adobe Flash is the original Flash authoring tool. Adobe Flash places a large

emphasis on providing a visual environment in which to create Flash animations,
but it can also be used to create Flash applications using only ActionScript. The
following steps show you how to create a new project in Adobe Flash C54 that

uses the Away3D library:

1. Open up Adobe Flash C54 and click File | New....
2. Select Flash File (ActionScript 3.0) from the General tab and click on the

OK button.

[11]

Building Your First Away3D Application

3. Click File | Publish Settings....
4. Click on the Flash tab, and click the Settings... button.
5. Click on the button with the plus icon under the Source Path tab.

Advanced ActionScript 3.0 Settings [E3a]

Docurment dass: W j

Export classes in frame: 1

Errars: [V Strick Mode
YWarnings Mode

Stage: |V Automatically declare stage instances

Dialect: ’F\ctionScript 3.0 (Recommended) V]

Source path | Library path | External library path | Config constanks |

O

[Add New Path |

6. Click on the button with the folder icon.

Advanced ActionScript 3.0 Settings =]

Document class: v _)j

Export classes in frame: 1

Errars: [¥] Strick Mode
Warnings Mode

Stage: || Automatically declare stage instances

Dialect; [ActionScript 3.0 {Recommended) V]

Source path | Library path I External library path I Config conskanks |

4 =@

7. Browse to the Away3D source code directory, or type it directly into the list,
and click on the OK button to save the changes.

8. Click on the OK button to close the Advanced ActionScript 3.0 Settings
window.

[12]

http://www.zshareall.com

Chapter 1

9. Click on the OK button to close the Publish Settings window.
10. Click File | Save and save the FLA file to a directory of your choice.

Targeting the Flash Player 10 runtime

As we mentioned at the beginning of this chapter, Away3D 3.x targets the Flash
Player 10 runtime. In order to compile an application using Away3D 3.x, your
authoring tool needs to be configured to use a version of the Flex SDK 3.2 or above.

The Flex SDK can be freely downloaded from http://opensource.adobe.
com/wiki/display/flexsdk/Download+Flex+3. Itis best to download the latest
milestone release of the Adobe Flex SDK listed on the page. Once downloaded,
extract the ZIP file to a convenient location.

Adobe Flex Builder and Adobe Flash Builder

These steps are only required in Flex Builder 3. In Flash Builder 4, the default Flex
SDK is version 4.0, and the default target Flash Player version is 10.

1. With your ActionScript project open, click Project | Properties.

2. Select the ActionScript Compiler option from the left-hand pane. Make sure
the Require Flash Player version checkbox is enabled, and enter 10.0.0 as the
version. Now click on the Configure Flex SDKs link.

Properties for SwayiD = B >
type filter text ActionScript Compiler (=g =
Resource

ActionScript Applications Flex SDK version

@ Use default SDK (currently "Flex 3.2") Configure Flex SDEs..,
ActonitiptGanniley) Use a specific SDK: | Flex 3.2
- J OCTTOTTTE 2
Builders

Project References
Run/Debug Settings

Compiler options

[V] Copy non-ermbedded files to output falder
|| Generate accessible SueF file

[7] Enable strict type checking

[¥] Enable warnings

Additional compiler arguments:

HTML swrapper
[V] Generate HTML wrapper file

[¥] Require Flash Playerversion: 10, 0 .0]

T9] Lse Express Install

'-"' Enable integration with brovser navigation

| Restare Defaults | | Spply |

@ | Qk | ‘ Cancel ‘

[13]

Building Your First Away3D Application

3. Click on the Add button.

4. In the Add Flex SDK dialog box, type in the location where the Flex SDK
was extracted to in the Flex SDK location textbox, or click on the Browse
button to search for the directory.

5. The Flex SDK name textbox should now show the name of the selected Flex
SDK. Click on the OK button in the Add Flex SDK dialog box to return
to the Preferences window.

6. Enabling the checkbox next to the new SDK instructs Flex to use that SDK by
default. Click on the OK button to return to the project properties window.

Preferences (Filtered) | = [[Ez)
type filter text Installed Flex SDKs M M
Flex Add, remove, or edit Flex SDE definitions,
Installed Flex SDKs The checked SDK will be used for Flex projects that don't specify an SDK version,
Installed SDEs:
Mame Lacation Add..,
4 Flex 2.0.1 Hotfix 3 C\Program Files\Adobe\Flex Builder Rsdksh2.0.1 Edit
) 212 CivPrograrm Fi dobetFlex Builder 3hsdksi3.2.0 -
[7] B Flex 3.5 Ci\FlexSDK3S Herngis
[V] &5k which SDK to use when importing projects fror older wersions of Flex Builder
| ResetspicList | | Apply |
.j:':?". [QK] [Cancel]

[14]

Chapter 1

7. The version number shown next to the Use default SDK radio button in the
Flex SDK version group box should be that of the new Flex SDK. Click on
the OK button to close down the properties window.

Fi | Properties for Away3D [= B[]
type filter text ActionScript Compiler S -
Resource
ActionZcript Applications Fleg Sk werdion
ActionScript Build Path (é_ Use default SDK (currenthy "Flex 3.5%)]
ActionScript Cornpiler

1 Use a specific 30K | Flex 3.5
Action3cript Modules

Builders
Project References
Run/Debug Settings

Corpiler options

[V] Copy non-ermbedded files to output folder
] Generate accessible SYF file

[¥] Enable strict type checking

[¥] Enable warnings

Additional compiler arguments:

HTML werapper

¥ Generate HTML wrapper file
[V] Require Flash Playerversion: 10, 0 A0

[¥] Use Express Install

[V] Enable integration with browser navigation

| Restare Defaults | | Spply |

oK | Cancel |

FlashDevelop

When you install FlashDevelop for the first time you do have the option of also
downloading a copy of the Flex SDK that already supports Flash Player 10. Or you
can use the following steps to manually specify the location of a suitable Flex SDK:

1. Click Tools | Program Settings....

[15]

Building Your First Away3D Application

2. Select the AS3Context option in the left-hand pane, and click on the button
with the three ellipses next to Flex SDK Location, which can be found in the

group of options labeled Language.

@ Sertings will kake effect as soon as you edit them successfully buk some may require a prograr restart,

Settings
[Man .| AS3Context [| Disable Help

(= FlashDevelap Adds an ActionScript 3 context For the ASCompletion engine.

Plugins B Common

L Check Syntax On Save False

o A53Context Enable Completion True

i T iaenerate Imporks True

s A5Completion Lfazy Classpath Explorati.on False

5 BockmarkPane] List All Types In Completion True

FPlay After Build True

P DataEricoder Show Qualified Types In Completion True

lr FileExplarer | User Classpath
i FlashConnect 3 E Documentation
i FlashLogviewer Documentation Cammand Line http: ey, google, com)search?g=%22 actionscrip
i FlashWiewer B Language
far HareContext £33 Classpath Libraryia53hintrinsic
ik LayoutManager Diefault Flash Yersion 9
1 MacroManager Disable Flex Debugger Hosting False
i OukputPanel [L = = e = P | =12 '
i PHPConkext ation ' {:l]
14 ProjectMananer R Bl
1k ResulksPanel —
e StartPage Flex SDK Location
s TaskListPanel i The path to the Flex SCK on your computer,

4| m | F

| Close

3. Browse to the location where the Flex SDK has been extracted and click on

the OK button.

4. The Flex SDK Location should now show the updated location. Click on the

Close button.

With a FlashDevelop project open, click Project | Properties.
Under the Output tab select Flash Player 10 from the Target drop-down list.

Click on the OK button to save the changes.

[16]

Chapter 1

Adobe Flash CS4

The following steps show you how to use the Flex SDK in Adobe Flash CS4:

1. Click Edit | Preferences.

2. Select the ActionScript option in the left-hand Category pane. Then click on
the ActionScript 3.0 Settings... button.

3. Type in the location where the Flex SDK was extracted to in the Flex SDK
Path textbox, or browse to the folder location by clicking on the button with
the folder icon at the end of the textbox.

4. Click on the OK button to save the changes.

ActionScript 3.0 Advanced Settings (==

Flex SDK Path¥ C:\FlexsDK3s @

The Falder containing bin, framewarks, lib and other folders.

Source path: + ﬁ

Folders containing ActionScript class files,

Library path: + m ﬁ

SwC files or Folders containing SWC files,

External library path: + - | ﬁ

SWC files used as runtime shared libraries,

(o4 Cancel

5. Click on the OK button to close the Preferences window.

[17]

Building Your First Away3D Application

Creating the initial application

At this point, your authoring tool is configured and a new project has been created
and configured to use the Away3D library and a version of the Flex SDK that targets
Flash Player 10. It's now time to create your first Away3D application.

Away3D includes a large number of features, but there are a few basic classes that
need to be set up before these features can be used. These classes are:

e Scene3D, which represents the 3D space that holds the 3D objects that are
to be displayed on the screen. This is commonly referred to as the scene.

e Camera3D, which provides an object through which the scene is viewed. This
is commonly referred to as the camera.

e View3D, which is a container sprite added to the stage that displays the
scene as it is viewed by the camera. This is commonly referred to as the view.

The term 3D object used throughout this book is a general term
M that refers to any 3D model or primitive shape that is placed in
Q the scene. 3D objects are represented by the Object3D class,
from the away3d. core.base package, or classes that extend the
Object3D class.

The Away3DTemplate class will include the basic logic required to create and
initialize the scene, camera, and view objects. Let's take a look at the code that
makes up the Away3DTemplate class.

package

{

The scene, camera, and view, which are represented by classes called scene3D,
Camera3D, and View3D, are imported to make them available within the class.

import away3d.cameras.Camera3D;
import away3d.containers.Scene3D;
import away3d.containers.View3D;

We also import the Flash sprite class, which will be extended by the
Away3DTemplate class, and the Flash Event class, used by the Flash event system.

import flash.display.Sprite;
import flash.events.Event;

[18]

Chapter 1

By extending the sprite class, the Away3DTemplate class can be added to the Flash
stage just like any other visual element.

public class Away3DTemplate extends Sprite

{

We define properties for the scene, camera, and view, using the classes that were
imported above.

protected var scene:Scene3D;
protected var camera:Camera3lD;
protected var view:View3D;

The constructor goes on to call a number of functions, each of which is used to set up
an aspect of the 3D application.

public function Away3DTemplate () :void

{
First user interface elements are created by the initUI () function.
initUI () ;

Those properties that make up the core elements of the Away3D engine (that is,
the scene, camera, and view) are initialized by calling the initEngine () function.

initEngine () ;

The scene is populated by the initScene () function.
initScene () ;

Event listeners are configured by the initListeners () function.

initListeners() ;

}

The initEngine () function is where the core elements of the Away3D engine
are created.

protected function initEngine () :void

{
The only object we need to explicitly create is the view3D class.

view = new View3D() ;

While we could also manually create the scene and camera, these objects are created
by the view3D class by default. Here we simply get a reference to these two objects
for convenience.

[19]

Building Your First Away3D Application

By default, the camera is positioned 1,000 units towards the
3 negative end of the Z-axis (so its position is (0, 0, -1000)), looking
Q back at the scene origin. See the section Positioning objects in a
3D scene for more information on positioning within a 3D scene.

scene = view.scene;

camera = view.camera;

Just like our own Away3DTemplate class, the view3D class extends the Flash Sprite
class. In order for the view3D object to be visible on the screen we need to add it
as a child.

addChild (view) ;

Finally, the view3D object is repositioned so it is in the centre of the screen. Note that
the X and Y coordinates assigned here position the view3D object within the Flash
stage, and are not related to a position within the 3D scene.

view.X = stage.stageWidth / 2;
view.y = stage.stageHeight / 2;

}
The initListeners () function is used to register event handlers.

protected function initListeners() :void

{

We have registered the onEnterFrame () function to be called once per frame in
response to the Event . ENTER_FRAME event.

addEventListener (Event .ENTER FRAME, onEnterFrame) ;

}

In the onEnterFrame () function we render a single frame to the screen by calling
the view3D render () function. Remember that the onEnterFrame () function is
called continuously in response to the Event . ENTER_FRAME event. By continuously
rendering frames in this manner, we can create the impression of movement or
animation within a 3D scene, just like the frames of a film strip being projected
onto a screen.

protected function onEnterFrame (event:Event) :void

{

view.render () ;

[20]

Chapter 1

The initScene () function is where we populate the scene, giving us something to
look at when the application is run. Because the Away3DTemplate class is designed
to be generic, this function is empty. It is expected that additional classes will extend
the Away3DTemplate class and implement the initScene () function.

protected function initScene() :void {}

The initUI () function is where we create any user interface elements. Just like
the initScene () function, the initUI () function is empty, and is expected to be
implemented by classes that extend the Away3DTemplate class.

protected function initUI () :void {}

}
}

It is common to create and initialize the three classes referenced by the

initEngine () function regardless of the type of 3D application you

are trying to create, be it a game, a 3D user interface, or a simple banner.

=~ Away3D does include a class called SimpleView, contained in the
away3d. test package, that allows you to get up and running quickly by
initializing these classes. The Away3DTemplate, while achieving much
the same end result, has been designed to be easily used as the base for all
the applications that will be created throughout the rest of the book.

Running Away3DTemplate

The instructions under the heading Creating an empty project for Away3D stepped you
through the process of creating an empty project ready to accept code that uses the
Away3D engine. In order to run the Away3DTemplate class, we now need to add that
class to the empty project. We also need to specify the class as the application entry
point, meaning it will be executed when the application is first run.

Adobe Flex Builder and Adobe Flash Builder

The following steps show you how to add the Away3DTemplate class to the Flex and
Flash Builder projects we created earlier:

1. When using the previous instructions to create an empty project, Flex/Flash
Builder will create a default ActionScript file for you with the same name
as the project, for example, Away3D. as. This file needs to be deleted, so
right-click on the file in the Project Explorer | Flex Navigator pane and
click on the Delete option.

2. Click on the Yes button to confirm the deletion of the file.

[21]

http://www.zshareall.com

Building Your First Away3D Application

3. Click File | New | ActionScript Class.

4. Inthe New ActionScript Class dialog box, type Away3DTemplate in the
Name textbox and click on the Finish button.

5. Paste the code for the Away3DTemplate class into the new Away3DTemplate.as
file, overwriting any default code that may be present.

6. Right-click on the Away3DTemplate.as file in the Project Explorer | Flex
Navigator pane and click on the Set as Default Application option. The
icon for the file should include a green triangle and a blue sphere.

o = html-template

4 [

wiay3DTemplate.as

7. To compile and run the application click Run | Run | Away3DTemplate.

FlashDevelop

The following steps show you how to add the Away3DTemplate class to the
FlashDevelop project we created earlier:

1. Using the previous instructions to create an empty project, FlashDevelop
will create a default file called Main. as in the src directory. This needs
to be deleted. Right-click on the file in the Project pane and click on the
Delete option.

Press the OK button to confirm the deletion of the file.
Click File | New | AS3 Document.

Paste the code for the Away3DTemplate class into the new file, overwriting
any default code that may be present.

5. Click File | Save. Save the new file as Away3DTemplate.as under the project
src directory by clicking the Save button.

[22]

http://www.zshareall.com

Chapter 1

6. Right-click on the Away3DTemplate.as file in the Project pane and click on

the Always Compile option. The icon for the file should change to include
a green arrow pointing down.

[o) B3l - FlashDewvelop
Eile Edit View Search Inse]
28 =)
R i
= -]
£ Away3D (AS3) |

-l Bin
-5 lib

o4 Mway3DTemplate as

7. To compile and run the application click Project | Test Movie.

Adobe Flash CS4

The following steps show you how to add the away3DTemplate class to the Adobe
Flash C54 project we created earlier:

1.

SAN- IS

Click File | New....
Select ActionScript File from the General tab and click on the OK button.

Paste the code for the Away3DTemplate class into the new file.
Click File | Save.

Save the file as Away3DTemplate.as in the same directory as the FrA file from
the previous instructions.

Go back to the FLa file and click File | Publish Settings....
Click on the Flash tab, and click on the Settings... button.

[23]

Building Your First Away3D Application

8. Type in Away3DTemplate into the Document Class textbox, and click on
the OK button to save the changes.

Advanced ActionScript 3.0 Settings (=3l

Documentcla{: Away3DTemplate i W j

Export classes in frame: 1

Errors: || Strict Mode
‘Warnings Mode

Stage: Automatically declare skage instances

Dialect: [F\ctionScript 3.0 {(Recommended) -]

Source path | Library path I External library path I Config constants |

=P

Falders containing ActionScript class files,

[Ok] I Cancel

9. Click on the OK button to close the Publish Settings window.

10. To compile and run the application click Control | Test Movie.

o If you see the ActionScript Class Warning dialog box when
~ clicking the OK button in step 8, go back to step 5 and make
Q sure that you saved the Away3DTemplate. as file in the same
directory as the FLA file.

The end result

When you compile and run the application you will see, well, nothing. However, this
is fine, because it is the expected result. The Away3DTemplate class has provided a
foundation that takes care of the initialization and updating of the Away3D engine,
but does not create any visible objects that will be shown on the screen.

[24]

Chapter 1

Positioning objects in a 3D scene

Before we start adding objects to the scene, it is important to know how objects are
positioned in a 3D environment.

Traditional 2D Flash applications place objects on the screen along the X
(or horizontal) and Y (or vertical) axes. These Cartesian coordinates uniquely
define a position in 2D space.

Away3D extends the 2D coordinate system by adding a third Z-axis to allow the
depth of an object to be defined.

3D coordinate systems are generally referred to as left or right handed. Away3D uses
a left-handed coordinate system. To visualize the left-handed coordinate system,
hold your left hand up with your palm facing away from you. Point your middle
finger away from you in the same direction as the palm of your hand. Point your
index finger straight up in the air, and point your thumb to the right. With your
fingers and thumb pointing like this imagine that your middle finger is the Z-axis,
your index finger is the Y-axis, and your thumb is the X-axis, with each finger or
thumb pointing towards the positive ends of the axes.

While pointing your fingers in the air might seem like an amusing exercise, it is an
easy way to work out which way is up in 3D.

The following image shows the three axes that make up a left-handed 3D coordinate
system. Notice that the Y-axis in the coordinate system is inverted compared to the
traditional 2D coordinate system used by Flash. In Flash, placing an object lower on
the screen means assigning it a higher position on the Y-axis. In Away3D, objects
with higher Y values will move up along the Y-axis.

7
<
NG

=N

[25]

Building Your First Away3D Application

Extending Away3DTemplate to populate
the scene

To actually display a 3D object on the screen, we will need to create another class
called sphereDemo. Let's take a look at the code for the SphereDemo class.

package

{

Away3D includes a number of primitive shapes that can be easily added to the scene.
These primitives are covered in more detail in Chapter 2, Creating and Displaying
Primitives. We will be adding the sphere primitive to the scene, which is represented
by the sphere class.

import away3d.primitives.Sphere;

The sphereDemo class will extend Away3DTemplate, allowing us to initialize and
update the Away3D engine with a minimum amount of code.

public class SphereDemo extends Away3DTemplate

{

In the sphereDemo constructor, we simply call the Away3DTemplate constructor with
the super () statement, which will in turn initialize the Away3D engine by calling
the initUI (), initEngine (), initScene (), and initListeners () functions.

public function SphereDemo ()

{

super () ;

}

The initScene () function was deliberately left empty in the Away3DTemplate class.
The sphereDemo class overrides this function to add a sphere to the scene.

protected override function initScene () :void

{

First, we call the initScene () function from the base class.

In truth, calling the initScene () function from the base class
R will do nothing, as this function was deliberately left empty in the
Q Away3DTemplate class. However, calling the base class functions
is a good habit to get into, as it is required by other functions like
initEngine () and initListeners ().

super.initScene () ;

[26]

http://www.zshareall.com

Chapter 1

We then create a new sphere 3D object. The sphere 3D object will be placed at the
origin of the scene, by default. If you remember from the Away3DTemplate class,
the camera is placed at (0, 0, -1000), and is oriented to look back at the scene origin.
This means the sphere 3D object will be in front of the camera when we run

the application.

- -
A number of Away3D classes accept an instance of the Object class,
called an init object, as a constructor parameter. This init object is created
using object literal notation. The following code would create a Sphere
object, and place it at (0, 0, 500).

var sphere:Sphere = new Sphere (

{
x: 0,
y: 0,
z: 500
}

)i

Object literal notation is a short-hand way of creating associative arrays,
_ which are instances of the Object class that maps properties to values.
% The following code has the same effect as the previous code:
L

var obj:0bject = new Object () ;

obj.x = 0;
obj.y = 0;
obj.z = 500;

sphere = new Sphere (obj) ;
The properties of the Sphere object could also have been set after it was
instantiated.

var sphere:Sphere = new Sphere() ;
sphere.x = 0;

0;

sphere.z = 500;

sphere.y

Although we don't use an init object here, they will be used extensively
throughout the rest of the book.

var sphere:Sphere = new Sphere ();

Finally, in order for the sphere to be visible it needs to be added as a child of
the scene.

scene.addChild (sphere) ;

}
}
}

[27]

Building Your First Away3D Application

Running SphereDemo

For all authoring tools creating an application that builds off the Away3DTemplate
class involves creating a new ActionScript AS file, writing the new class to the AS
tile, and specifying the new class as being the one that should be run when the
application is executed.

The process of running the sphereDemo class can be used to run any of the example
classes that will subsequently be presented throughout the book. As you will see,
the process is very similar to creating the original Away3DTemplate class, with a
few name changes.

Adobe Flex and Adobe Flash Builder

Follow steps 3 to 7 from the instructions under the preceding heading Running
Away3DTemplate in Adobe Flex, substituting the name Away3DTemplate for
SphereDemo, where appropriate. This will result in your project including both the
SphereDemo and Away3DTemplate classes and AS files, with the SphereDemo class
being set as the default application.

FlashDevelop

Follow steps 3 to 7 from the instructions under the preceding heading Running
Away3DTemplate in FlashDevelop, substituting the name Away3DTemplate for
SphereDemo, where appropriate. This will result in your project including both the
SphereDemo and Away3DTemplate classes and AS files, with the sphereDemo class
being set to always compile.

Adobe Flash CS4

Follow steps 1 to 10 from the instructions under the preceding heading Running
Away3DTemplate in Adobe Flash CS4, substituting the name Away3DTemplate for
SphereDemo where appropriate. This will result in the two files, SphereDemo. as
and Away3DTemplate.as, residing in the same directory as the FLa file, with the
SphereDemo class being used as the entry point to (or Document class) for application.

[28]

Chapter 1

The end result

Now when you compile and run the application, you will see a sphere displayed on
the screen. By extending the Away3DTemplate class, we have created a simple 3D
application with the sphereDemo class using only a few lines of code. This example
demonstrates how the Away3DTemplate class can be used as a foundation to quickly
create new Away3D applications. All the examples presented throughout this book
will build on the away3DTemplate class in much the same way as we have done here
with SphereDemo.

Summary

We have discussed the two versions of Away3D, with version 2.x targeting Flash
Player 9, and version 3.x targeting Flash Player 10. The reasons for using one version
or the other were highlighted, along with the reason why this book will focus on
Away3D version 3.x.

We saw the steps required to download the Away3D source code, either as a ZIP
file or from the SVN repository. The process of configuring the authoring tools Flex
Builder, Flash Builder, FlashDevelop, and Flash CS4 was described, allowing each
of these tools to create Away3D applications.

With the authoring tools configured we could create the Away3DTemplate class,
which was then built upon by the SphereDemo class to show off the process of
compiling and running a simple Away3D application.

Now that we have seen how to configure the authoring tools and created the
Away3DTemplate class as a base for future Away3D applications, we can start
to explore the features provided by the Away3D engine. In the next chapter, we
will see how to create the primitive 3D objects supplied with Away3D.

[29]

Creating and Displaying
Primitives

In the last chapter, we saw how to get a simple Away3D application up and running
by creating a class that added a sphere to the scene. The sphere is just one of many
primitive 3D objects that are included with Away3D. This includes some common
shapes like cubes, planes, and cones, and some not so common shapes, such as a sea
turtle. In this chapter, we will look at a number of classes that can be used to create
primitive 3D objects by creating a sample application that adds each of them to the
scene in response to input via the keyboard.

But before diving into these primitive classes, we will first learn about the basic
elements; vertices, triangle faces, Sprite3D objects, and segments; that are used as
the building blocks for more complex 3D shapes. In addition, we will explore the UV
coordinate system, which defines how texture maps are applied to the surface of

a 3D object.

This chapter covers the following:

e Alook at the basic elements that make up a 3D object
e The UV coordinate system
e Creating and displaying the primitive 3D objects included in Away3D

The basic elements of a 3D object

Each 3D object displayed by Away3D is actually a collection of a number of base
elements that have been combined to create the shape you see on the screen. There
are four base elements that are used to construct more complex 3D objects:

e Vertices

e Triangle faces

Creating and Displaying Primitives

e Sprite3D objects

e Segments

While some of these elements cannot be seen directly, they still play a vital role in
creating the end result. Let's take a look at these basic elements, and how they work
together to create a 3D object.

Vertices

A vertex is a point in 3D space defined by its position along the X, Y, and Z axes. An
individual vertex does not have any volume or shape, and is not visible in the scene,
but they can be used in combination to represent the corners of 3D shapes.

Vertices are represented by the vertex class from the away3d. core.base package.

Triangle faces

A group of three vertices are used to define the corners of a triangle, otherwise
known as a triangle face, or just a face.

Vertices Triangle

The triangle face is one of the three elements used by Away3D that can be added
directly to a mesh to create more complex shapes. A mesh can be thought of as

a container used to hold a collection of these basic elements, allowing them to

be displayed as a group to visualize more recognizable 3D objects. Meshes are
represented by the Mesh class from the away3d. core.base package.

[32]

Chapter 2

Simple meshes can be made up using a small number of triangle faces. This cube
mesh is made up of 12 triangles: 2 triangles for each side.

More complex meshes, such as this car, can comprise several thousand triangle faces.

R Generally speaking, the more complex the 3D object, the more time it
~ takes Away3D to process it. So in a real world application, you would
Q want to limit the number of complex meshes that are visible at any one
time in order to maintain an acceptable level of performance.

Triangle faces are represented by the Face class from the away3d.core.base
package. Here is some example code that creates a mesh containing a single
triangle face.

First, we need to create a new instance of the Mesh class. This will hold the triangle
face element.

var mesh:Mesh = new Mesh() ;

[33]

Creating and Displaying Primitives

Next, we create a new instance of the Face class. This represents the triangle face
element that will be added to the mesh.

var face:Face = new Face(

The first three parameters passed to the Face constructor define the three vertices
that make up the corners of the triangle.

new Vertex (0, 10, 0),
new Vertex(-10, -10, 0),
new Vertex (10, -10, 0),

The fourth parameter can be used to define a material that is applied to this element.
Chapter 5, Materials, looks at materials in more detail. We have passed in null here,
which means the triangle face will use the default mesh material.

The default material applied to a mesh is an instance of the
M WireColorMaterial class, which displays a color that is randomly
Q assigned each time a WireColorMaterial object is constructed. This
means that the triangle face being created here will display a different
color each time the application is run.

null,

The last three parameters define the UV coordinates to be applied to the triangle face,
which in turn define how a material will be applied. The following UV coordinates
section discusses these coordinates in more detail.

new UV (0, 0),

new UV(0, 1),

new UV(1, 0)
)i

Finally, the triangle face is added as part of the mesh.
mesh.addFace (face) ;
The resulting Mesh object can then be added to the scene.

The order in which the vertices are defined in a triangle face determine which side
of the triangle is considered the front, and which side is the back. The distinction is
important because the back of a triangle face is not visible, by default.

The side whose vertices are arranged in counterclockwise order is the front of the
triangle face. The following image shows how the order of the vertex objects passed
in as the first three parameters to the Face constructor, and the counterclockwise
direction that they make, define the front and back sides of the triangle face.

[34]

Chapter 2

First Vertex
(0.10.0)

Front Side

Second Vertex Third Vertex
(-10, -10, 0) (10, -10, 0)

~_

This process of creating a triangle face and adding it to a mesh is essentially how
most of the primitive shapes included in Away3D are constructed, although some
of the primitive classes, such as the cube class, extend the AbstractpPrimitive class
from the away3d.primitives package to utilize the number of utility functions that
the AbstractPrimitive class provides to aid in the creation of primitive shapes.

Sprite3D

Meshes can also contain Sprite3D objects, which are 2D rectangular shapes that
are always oriented so they face the camera. While a Sprite3D object has no depth,
because it is never viewed from the side, this lack of depth is never perceived by
the camera.

The sprite3D class exists in the away3d. sprites package. Here is an example
that creates a Mesh object containing a single Sprite3D object that sits at the
meshes origin.

var mesh:Mesh = new Mesh() ;

The first parameter of the sprite3D constructor is the material that it will display. It
is an optional parameter that defaults to null. Without a material a Sprite3D object
simply displays a rectangle. To make this example more interesting we supply a new
instance of the BitmapMaterial class, which is set to display an embedded image
file called MyEmbeddedTexture. Materials, the cast class, and embedding resources
are covered in more detail in Chapter 5, Materials.

var sprite:Sprite3D = new Sprite3D(
new BitmapMaterial (Cast.bitmap (MyEmbeddedTexture))
)i

[35]

Creating and Displaying Primitives

The sprite3D object is then added to its parent mesh using the addsprite ()
function.

mesh.addSprite (sprite);

Sprite3D objects can be utilized to display details that appear the same from any
direction, like snowflakes or ball decorations on a Christmas tree. Sprite3D objects
are very simple elements, and therefore fast to render. Using Sprite3D objects in
place of a group of triangle faces can lead to significant gains in performance.

Take the mesh representing the Earth in the following figure. This might be a part

of an astronomical application designed to show off the solar system, and would be
typically created from a sphere primitive. The wireframe image on the left shows the
triangle faces that make up the sphere, and the image on the right shows the sphere
with a texture of the Earth applied to it.

This sphere is built up from a relatively small number of triangle faces, which means
that the sphere appears to have a number of sharp, angular edges. Because of the low
triangle count, you could expect an Away3D application displaying this one sphere
to perform well. But what if you are displaying all the planets? Maybe you also want
to display all the moons around all the planets as well. Rendering the triangle faces
for all those additional spheres does add up.

[36]

Chapter 2

Now take a look at a mesh that contains a single sprite3D object.

The sprite3D object is displaying a material that shows the Earth from a single
angle. The texture used by this material has been pre-rendered from a sphere made
up of many thousands of triangles, which eliminates the sharp edges seen in the
previous triangle mesh. Away3D can render this Sprite3D object, displaying the
pre-rendered texture, much faster than it can display the lower-quality sphere from
the first two images. An application displaying all the planets and moons in the
solar system will run at a much higher level or performance if they were displayed
as meshes made up of a single Sprite3D object, as opposed to being displayed as
meshes made up of a number of triangle faces.

The downside to sprite3D objects is that, unlike regular 3D objects, they appear
the same when viewed from different angles. Even if we were to view the

mesh built using a Sprite3D object representing the Earth from the other side,

it would still show the Indian Ocean. You can see this effect in action with the
CompareSprite3DTriMesh application from the Packt website.

_ Away3D includes a class called DirectionalSprite that allows
% different images to be displayed by a flat object as the angle that it is
L viewed from changes. This class is covered in more detail in Chapter 9,
Special Effects with Sprites.

[37]

Creating and Displaying Primitives

Segments

Segments are used to display 2D lines. Strictly speaking, a 2D line has no volume,
and should therefore be invisible. However, there are many situations where being
able to view a line within the scene is useful.

Segments are represented by the Segment class from the away3d.core.base
package. The geometry of a segment is defined between two vertices. Here is an
example that creates a Mesh object containing a single Segment object stretching
50 units either side along the X-axis of the meshes origin:

var mesh:Mesh = new Mesh() ;

var segment:Segment = new Segment (
new Vertex(-50, 0, 0),
new Vertex (50, 0, 0)

)

Segments are added to their parent mesh using the addSegment () function.

mesh.addSegment (segment) ;

UV coordinates

Bitmap materials are used to display a texture map, usually from a JPG, PNG, or
GIF image file, on the surface of a 3D object. The alignment of the texture map on

a triangle face is determined using what are known as UV coordinates. The name
comes from the axes that make up the coordinate space. These 2D coordinates have
arange of 0 to 1, and are used to map a triangle face vertex to a relative position

on a texture map.

The following image shows the UV coordinates for the vertices used to define the
triangle face we created earlier mapped onto a checkerboard texture map.

[38]

Chapter 2

Texture Map Triangle Face

Vertex C
Uv (0, 1) Vertex A
@]

1

122}

%

<

>

0 U Axis 1
o) O ©

Vertex A Vertex B Vertex B Vertex C
UV (0, 0) UV(L, 0)

The U and V axes work in much the same way as the standard X and Y axes used by
Flash. The axis naming is distinct between the coordinate systems to distinguish UV
coordinates, which plot points on texture maps, to XY coordinates, which plot points
within a space or on the stage. Also, keep in mind that the V axis, which increases

as it moves up, is the reverse of the Y axis used by the Flash stage and the Flash
drawing routines, which increases as it moves down.

Creating primitive 3D objects

We have seen how complex shapes can be built up from vertices, triangle faces,
Sprite3D objects, and segments. In practice, it would be a tedious and error-prone
task to have to create each of these shapes manually from their base elements every
time we wanted to use them. Fortunately, Away3D includes a number of classes that
can be used to create a wide range of primitive shapes with ease.

To demonstrate the primitive shapes included in Away3D, we will create
an application that will display a selection of them on the screen. This will
be implemented by a class called PrimitivesDemo, which will extend the
Away3DTemplate class that was introduced in Chapter 1, Building Your First
Away3D Application.

[39]

Creating and Displaying Primitives

The PrimitivesDemo class is quite large, but its function is quite simple. Let's break
down the code to see how it works.

package

{

The object3D class has been imported. Object3D is the base class for all 3D objects
that can be added to the scene.

import away3d.core.base.Object3D;

A number of classes have been imported from the away3d.primitives package.
Each of these classes represents a primitive shape that is included with the
Away3D library.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import

away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.
away3d.

primitives.
primitives.

primitives.

primitives
primitives

primitives

primitives.

primitives

primitives

primitives.
primitives.

primitives.

primitives
primitives

primitives

Cone;
Cube;
Cylinder;

.GeodesicSphere;
.GridPlane;
.LineSegment;

Plane;

.RegularPolygon;
.RoundedCube;

primitives.

SeaTurtle;
Skybox;
Skyboxé6 ;
Sphere;

.Torus;
.Triangle;
.Trident;

The application will respond to two Flash events. The first event will be triggered
once per frame, which, as we saw from Chapter 1, Building Your First Away3D
Application, is used to redraw and animate the scene. The second will be triggered
when a keyboard key has been released, and will be used to change the primitive
that is displayed on the screen. Responding to these events requires that we import
the Event and KeyboardEvent classes from the flash.events package.

import flash.events.Event;
import flash.events.KeyboardEvent;

[40]

Chapter 2

Some of the primitives have unique ways of applying materials. To demonstrate this,
we will use the BitmapFileMaterial class. Materials are covered in more detail in
Chapter 5, Materials.

import away3d.materials.BitmapFileMaterial;

Just like the sphereDemo class from Chapter 1, Building Your First Away3D Application,
the primitivesDemo class extends the Away3DTemplate class, allowing it to easily
initialize the Away3D engine.

public class PrimitivesDemo extends Away3DTemplate

The primitivesDemo class has one property called currentPrimitive, which will
reference an Object3D object. Since all the primitive classes extend the object3D
class, either directly or indirectly, we can use this property to reference any of the
primitive 3D objects that will be created.

protected var currentPrimitive:0Object3D;

The constructor does nothing more than call the Away3DTemplate constructor, which
in turn will call the initUI (), initEngine (), initScene (), and initListeners ()
functions.

public function PrimitivesDemo () :void

{

super () ;

}

The initEngine () function has been overridden to set the initial position of the
camera to be 500 units down towards the negative end of the Z-axis. This will give
the camera a good view of the primitive 3D objects, which will be positioned at
the origin.

protected override function initEngine() :void

{
super.initEngine () ;

camera.z = -500;

}

The initScene () function has been overridden to call the initSphere () function,
which will cause the sphere primitive to be displayed on the screen first.

protected override function initScene () :void

{

super.initScene () ;
initSphere() ;

}

[41]

Creating and Displaying Primitives

The initListeners () function is overridden to register the onkeyUp () function
to be called when the KeyboardEvent .KEY_UP event is dispatched by the stage, in
response to a key on the keyboard being released.

protected override function initListeners() :void
super.initListeners () ;
stage.addEventListener (KeyboardEvent .KEY UP, onKeyUp) ;

}

The onEnterFrame () function is called once per frame, and it is where we animate
the scene.

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

In order to see the primitive shapes from a good range of angles, we will rotate them
slowly within the scene. This is done by modifying the rotationx, rotationy, and
rotationz properties from the 0bject3D class. Animating 3D objects in this way is
covered in more detail in Chapter 3, Moving Objects.

The speed at which the 3D object will rotate in this example is dependent on the
frame rate of the application. The more frames that are rendered per second, the
faster the rotation properties will increase, and therefore the faster the 3D object
will rotate.

. Chapter 3, Moving Objects, shows you how to use the TweenLite
% library to implement movement and rotation in a frame rate
=" independent manner, while Chapter 13, Performance Tips, shows
you how to modify the maximum frame rate.

currentPrimitive.rotationX += 1;
currentPrimitive.rotationY += 1;
currentPrimitive.rotationZ += 1;

}

The onKeyUp () function is called when the KeyboardEvent . KEY UP event has been
dispatched by the stage, in response to a key on the keyboard being released.

protected function onKeyUp (event:KeyboardEvent) :void

{

[42]

http://www.zshareall.com

Chapter 2

Before a new primitive is created and displayed, the primitive that is currently
being displayed has to be removed from the scene. This is done by calling the
removeCurrentPrimitive () function.

removeCurrentPrimitive () ;

We now respond to the particular key that was just released. Each key on the
keyboard is identified by a numeric code. These codes can be found at: http: //www.
adobe.com/livedocs/flash/9.0/main/wwhelp/wwhimpl/common/html/wwhelp.
htm?context=LiveDocs_Parts&file=00001136.html. The comments against the
case statements note the key that the code relates to.

Inside each case statement, a function is called that will create a new primitive
3D object.

switch (event.keyCode)

{

case 49: // 1

initCone () ;
break;

case 50: // 2
initCube () ;
break;

case 51: // 3
initCylinder () ;
break;

case 52: // 4
initGeodesicSphere() ;

break;

case 53: // 5
initGridPlane() ;
break;

case 54: // 6
initLineSegment () ;
break;

case 55: // 7
initPlane() ;
break;

case 56: // 8
initRegularPolygon() ;
break;

case 57: // 9
initRoundedCube () ;
break;

case 48: // O

[43]

Creating and Displaying Primitives

initTorus () ;
break;

case 81: // Q
initTriangle() ;
break;

case 87: // W
initSeaTurtle () ;
break;

case 69: // E
initSphere() ;
break;

case 82: // R
initTrident () ;
break;

case 84: // T
initSkybox () ;
break;

case 89: // Y
initSkyboxé6 () ;
break;

default:
initSphere() ;
break;

}
}

Just as a 3D object has to be added to the scene using the addchild () function
from the scene object for it to be visible, to remove it from the scene we call the
removeChild () function.

The removeCurrentPrimitive () function, which is called by the onkeyUp ()
function before a new primitive 3D object is created, will remove the currently
displayed 3D object.

protected function removeCurrentPrimitive () :void
scene.removeChild (currentPrimitive) ;

currentPrimitive = null;

}

The remainder of the PrimitivesDemo class is made up of the functions that create
and display the various primitive 3D objects demonstrated by the application.
These functions are shown in detail in the coming sections. In addition, a list of the
parameters that can be supplied to the primitive class constructors is provided.

[44]

Chapter 2

As we saw in Chapter 1, Building Your First Away3D Application, it is common for
classes included in the Away3D library to accept an init object as a constructor
parameter. This init object is usually created using object literal notation. While this
practice is common, it is not universal, as you will see with the Trident, skybox, and
SkyBox6 classes.

Unless otherwise noted, the parameters listed in the following tables relate to the
properties of the init object.

Where appropriate, an accompanying image is also provided showing the
primitive as a wireframe model, and with a bitmap material applied to it. Note that
these images are for illustrative purposes only, as they do not reflect the output

of the example code, which produces primitive 3D objects that use the default
WireColorMaterial class as their material.

Common init object properties

All of the primitive shapes demonstrated below, with the exception of the trident,
extend the Mesh class. Shapes like the triangle, sea turtle, line segment, and skybox
extend the Mesh class directly, while the rest extend the AbstractpPrimitive class,
which in turn extends the Mesh class.

The init object supplied to the constructors of the primitive classes is passed along

to the Mesh constructor. This means that there are a number of init object parameters
that are common to all the primitive shapes (excluding the trident because it does not
extend the Mesh class, and skyboxes, because they do not pass the init object down
to the underlying Mesh class).

The majority of these parameters deal with how materials are applied. Materials are
covered in more detail in Chapter 5, Materials.

Most of the init object parameters shown in these tables are also properties that can
be set or accessed on the object once it has been instantiated. So

var plane = new Plane ({bothsides: true});
could also be written as:

var plane = new Plane() ;
plane.bothsides = true;

[45]

Creating and Displaying Primitives

Parameter Data Type Default Value Description

outline Material null Defines a segment material to be
used for outlining the 3D object.

material Material null Defines the material displayed by
the base elements that make up the
mesh.

back Material null Defines a material to be used for the

back face of the base elements that
make up the mesh.

bothsides Boolean false Indicates whether both the front
and back sides of a face should
be rendered. Setting this to true
disables back face culling.

Cone

Creating a new instance of a primitive class is very straightforward. Once the
appropriate class has been imported from the away3d.primitives package, a new
instance of the class can be created and added to the scene directly. This is unlike the
triangle face, Sprite3D, and segment objects, which first had to be added to a mesh.

In truth, the process we followed to create a triangle face manually is much the same
as the process used by the primitive classes. The big difference is that the primitive
classes, which all extend the Mesh class (except for the Trident, Skybox, add
SkyBox6 classes), add the triangle faces to themselves instead of adding them

to a separate instance of the Mesh class.

[46]

Chapter 2

The initcone () function is used to create and display an instance of the cone class.

protected function initCone () :void

{

currentPrimitive = new Cone (

{

!
)i
scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the cone class:

height: 150

Parameter Data Type Default Value Description

radius Number 100 Defines the radius of the cone base.
height Number 200 Defines the height of the cone.
segmentsW int 8 Defines the number of horizontal

segments that make up the cone.

segmentsH int 1 Defines the number of vertical
segments that make up the cone.

openEnded Boolean false Defines whether the end of the cone is
left open or is closed.

yUp Boolean true Determines if the cone should be
oriented to point up along the Y axis.

Cube

The cube class creates a standard six-sided cube. By default, the sides are oriented
so that they are visible from outside. If you want to place the camera inside the cube
and see the sides, you can set the £1ip init object parameter to true, which will
reverse the orientation of the triangle faces that make up the sides of the cube.

[47]

Creating and Displaying Primitives

The initcube () function is used to create and display an instance of the cube class.

protected function initCube () :void

{

currentPrimitive =

new Cube () ;

scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the cube class:

Parameter Data Type

Default Value

Description

width Number

height Number

depth Number

flip Boolean

segmentsW int

segmentsH int

segmentsD int

mappingType String

100

100

100

false

CubeMappingType.
NORMAL / "normal"

Defines the width of
the cube.

Defines the height of
the cube.

Defines the depth of
the cube.

Flips the orientation of
the sides of the cube.
This is used to make

a cube that is visible
from the inside.

Defines the number of
segments that make
up the cube along its
width.

Defines the number of
segments that make
up the cube along its
height.

Defines the number of
segments that make
up the cube along its
depth.

Defines how the

UV coordinates are
applied to the cube.
Valid values are
normal and mapé.
These strings are

also defined in the
CubeMappingType
class as the constants
NORMAL and MAPS6.

[48]

Chapter 2

Parameter Data Type Default Value Description

faces CubeMaterialsData null A data structure that
holds six materials,
one for each face of
the cube.

cubeMaterials CubeMaterialsData null The same as the faces
property. If the faces
property has been set,
the cubeMaterials
property is ignored.

Most of the primitive classes are designed to have a single material applied to them.
The cube class is a little different. Using the cubeMaterials or faces parameters,
which both accept a CubeMaterialsData object, you can specify six individual
materials to be applied to each side of the cube separately. The CubeMaterialsbData
class resides in the away3d.primitives.data package.

The cubeMaterialsData constructor takes a number of init object parameters itself:
front, back, left, right, top, and bottom. Each of these parameters accepts a
material, which will be applied to the appropriate side of the cube.

new Cube (

{

cubeMaterials: new CubeMaterialsData (
{

left: new BitmapFileMaterial ("one.jpg"),
front: new BitmapFileMaterial ("two.jpg"),
right: new BitmapFileMaterial ("three.jpg"),
back: new BitmapFileMaterial ("four.jpg"),
top: new BitmapFileMaterial ("five.jpg"),
bottom: new BitmapFileMaterial ("six.jpg")

!
)i

In addition, by setting the mappingType init object parameter to mapé or
CubeMappingType .MAP§, it is possible to display a texture that has been split up into
two rows and three columns, with each of the six divisions being applied to one of
the sides of the cube.

[49]

Creating and Displaying Primitives

An example of such a texture is shown in the following figure:

This texture can then be applied to the cube like so.

new Cube (

{
mappingType: CubeMappingType.MAP6,
material: new BitmapFileMaterial ("map6.jpg")

!
)i

The following image shows the results of both the examples:

<

[50]

Chapter 2

Cylinder

The cylinder class creates either a solid or open-ended cylindrical 3D object.

The initCylinder () function is used to create and display an instance of
the cylinder.

class protected function initCylinder () :void

{

currentPrimitive = new Cylinder (

{

}
) ;
scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the cylinder class:

height: 150

Parameter Data Type Default Value Description

radius Number 100 Defines the radius of the
cylinder.

height Number 200 Defines the height of the
cylinder.

segmentsW int 8 Defines the number of

horizontal segments that make
up the cylinder. Increasing
this number produces a more
rounded cylinder.

[51]

Creating and Displaying Primitives

Parameter Data Type Default Value Description

segmentsH int 1 Defines the number of vertical
segments that make up the
cylinder.

openEnded Boolean false Defines whether the ends of the

cylinder are left open or closed.

yUp Boolean true Determines if the cylinder
should be oriented to point up
along the Y-axis.

Geodesic sphere

Away3D has two sphere primitives. The geodesic sphere, being constructed with
triangle faces of roughly equal size, is the more uniform of the two. This is unlike
the regular sphere primitive, where the triangle faces that make up the sphere are
smaller towards the top and bottom.

The following image is of a geodesic sphere primitive:

[52]

Chapter 2

Compare the geodesic sphere with the following image, which is of a regular sphere
primitive. Notice how the triangles that make up the regular sphere are much
smaller towards the bottom than they are around the middle.

The geodesic sphere will produce a more rounded shape compared with the
standard sphere using the same number of triangle faces.

Because of the way in which the UV coordinates are assigned
\y . .\ . . .
~ to the geodesic sphere, it is not useful for displaying bitmap
materials. See the following section on the sphere primitive for
more information.

The initGeodesicsphere () function is used to create and display an instance of the
GeodesicSphere class.

protected function initGeodesicSphere () :void

{

currentPrimitive = new GeodesicSphere() ;
scene.addChild (currentPrimitive) ;

}

[53]

Creating and Displaying Primitives

The following table lists the init object parameters accepted by the
GeodesicSphere class:

Parameter Data Type Default Value Description
radius Number 100 Defines the radius of the sphere.
fractures int 2 Defines the level of triangulation,

with higher numbers produce
smoother, more detailed spheres.

Grid plane

The grid plane is a grid of rectangles, and it is a handy primitive for judging the
position of other 3D objects in the scene. Combined with the trident primitive (which
is covered in the following section) to show the scene axes, it is very easy to replicate
the look of a simple 3D modeling application. As you can see in the following
screenshot, grid planes allow you to instantly see a 3D object's position relative to the
origin (or any other point in space), which can be invaluable when debugging.

[54]

http://www.zshareall.com

Chapter 2

The grid plane is constructed using segments rather than triangle faces. This allows it
to display rectangles rather than triangles, which is how the plane primitive (which
is constructed using triangle faces) is shown when it has a wire frame material
applied to it.

The initGridpPlane () function is used to create and display an instance of the
Gridplane class.

protected function initGridPlane () :void

{

currentPrimitive = new GridPlane (

{

segments: 4

}
) ;
scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the Gridplane class:

Parameter Data Type Default Value Description

width Number 100 Defines the width of the grid.
height Number 100 Defines the height of the grid.
segments int 1 Sets the number of grid divisions

per side, so a value of 2 would
create 4 rectangles in the grid.

segmentsw int 1 Defines the number of horizontal
segments that make up the grid.
This property defaults to the value
assigned the segments property.

segmentsH int 1 Defines the number of vertical
segments that make up the grid.
This property defaults to the value
assigned the segments property.

yUp Boolean true Determines if the grid plane
should be oriented to point up
along the Y axis.

[55]

Creating and Displaying Primitives

LineSegment

The LineSegment class is another example of a primitive that is built using segments
rather than triangle faces. It can be used to display a line between two points in
space. For convenience, you would probably use the LineSegment class rather than
build a mesh and then manually add a segment to it as we did in the section The basic
elements of a 3D object.

The initLineSegment () function is used to create and display an instance of the
LineSegment class.

protected function initLineSegment () :void

{

currentPrimitive = new LineSegment (

{

edge: 500

}
)i

scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the LineSegment class:

Parameter Data Type Default Value Description

edge Number 100 Sets the default line segment start and
end points to be edge/2 units either
side of the origin along the X axis. A
value of 100 will create a line segment
that starts at (-50, 0, 0) and ends at
(50, 0, 0).

[56]

http://www.zshareall.com

Chapter 2

Parameter Data Type Default Value Description
start Vector3D (-edge/2, 0, Sets the start point of the line
0) segment. If specified, this parameter
will override the default start point
defined by the edge parameter.
end Vector3D (edge/2, 0, Sets the end point of the line
0) segment. If specified, this parameter
will override the default end point
defined by the edge parameter.
segments Number 1 Sets the number of segments.
Plane

The plane is a flat, rectangular shape that is only visible from one side, by default.
When it is viewed from behind, the back-face culling process (which is used to
improve the performance of an Away3D application by not rendering the back
side of a triangle face) will prevent the primitive from being drawn. Setting the
bothsides init object parameter to true will override this behavior, and ensure
that the plane is visible from behind as well as from the front.

==

The initPlane () function is used to create and display an instance of the

Plane class.

protected function initPlane () :void

{

currentPrimitive

{

bothsides:

!
)i

true

new Plane (

scene.addChild (currentPrimitive) ;

}

[571]

Creating and Displaying Primitives

The following table lists the init object parameters accepted by the Plane class:

Parameter Data Type Default Value Description

width Number 100 Defines the width of the plane.
height Number 100 Defines the height of the plane.
segments int 1 Sets the number of segments per side,

so a value of 2 would create a plane
with 4 segments.

segmentsw int 1 Defines the number of horizontal
segments that make up the plane.
This property defaults to the value
assigned the segments property.

segmentsH int 1 Defines the number of vertical
segments that make up the plane.
This property defaults to the value
assigned to the segments property.

yUp Boolean true Determines if the plane should be
oriented to point up along the Y axis.

RegularPolygon

The Triangle class creates a three-sided primitive, and the Plane class creates one
with four sides. The RegularPolygon class is a little more flexible, and can be used
to create regular shapes with any number of sides (as long as it is more than three).

Just like the Plane class, an instance of the RegularPolygon class will not be visible
from the back unless the bothsides init object parameter is set to true.

The initRegularPolygon () function is used to create and display an instance of the
RegularPolygon class.

protected function initRegularPolygon () :void

{

currentPrimitive = new RegularPolygon (

{

[58]

Chapter 2

bothsides: true

}
)i
scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the
RegularPolygon class:

Parameter Data Type Default Value Description

radius Number 100 Defines the radius of the polygon.

sides int 8 Defines the number of sides of the
polygon.

subdivision int 1 Defines the subdivision of the

polygon. Larger numbers increase
the triangle count of the polygon.

yUp Boolean true If true, the polygon will be created
lying on the X/Z plane. If false, it
will be created lying on the X/Y
plane.

RoundedCube

The Roundedcube class produces a cube that has rounded edges. It uses significantly
more triangles than the cube class, so care should be taken to use the RoundedCube
class only in situations where the rounded edges can be seen. A rounded and a
regular cube off in the distance will look much the same, but the additional triangles
used to construct the rounded cube will still take an additional power to process.

[59]

Creating and Displaying Primitives

The initRoundedCube () function is used to create and display an instance of the
RoundedCube class.

protected function initRoundedCube () :void

{

currentPrimitive = new RoundedCube () ;
scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the
RoundedCube class:

Parameter Data Type Default Description
Value
width Number 100 Defines the width of the
cube.
height Number 100 Defines the height of the
cube.
depth Number 100 Defines the depth of the
cube.
radius Number height Defines the radius of the
/ 3 corners of the cube.
subdivision int 2 Defines the geometrical
subdivision of the rounded
cube.
cubicmapping Boolean false Defines if the textures are

projected considering the
whole cube or adjusting per
sides depending on radius.
faces CubeMaterialsData null A data structure that holds
six materials, one for each
face of the cube.
cubeMaterials CubeMaterialsData null The same as the faces
parameter (if the faces
parameter is specified this
parameter is ignored).

SeaTurtle

The sea turtle can't really be considered a primitive shape, but can be created and
used just like any other primitive. The sea turtle features heavily in demos created
by Rob Bateman, one of the core Away3D developers, whose personal website
ishttp://www.infiniteturtles.co.uk/blog/ (no doubt there is a correlation
between the URL and the inclusion of the sea turtle as a primitive with Away3D).

[60]

Chapter 2

Unlike the other primitives, which have shapes that lend themselves to being
generated programmatically, the SeaTurtle class is an example of a complex 3D
model that has been exported into an Actionscript file. Chapter 6, Models and
Animations, will cover the model formats supported by Away3D, and how they
can be exported into ActionScript classes, in more detail.

example download package on the Away3D website. It has the file

M The texture used in the following screenshot can be found in the
Q name seaturtle. jpg.

The initSeaTurtle () function is used to create and display an instance of the
SeaTurtle class.

protected function initSeaTurtle () :void

{

currentPrimitive = new SeaTurtle (

{

scale: 0.3
}
)i
scene.addChild (currentPrimitive) ;

}

The seaTurtle class has no init object parameters.

\ The scale init object parameter, used here to uniformly scale
~ down the size of the 3D object, is interpreted by the Object3D
Q class, which is inherited by the SeaTurt1le class. Chapter 3,
Moving Objects, covers scaling in more detail.

[61]

Creating and Displaying Primitives

Skybox

The skybox class creates a massive cube whose sides face inwards. The dimensions
of the skybox are 800,000 x 800,000 x 800,000 units. This compares with the default
dimensions of the cube class, which are 100 x 100 x 100 units. A skybox is designed
to enclose the entire scene, including the camera, and usually has a material applied
to it that displays a panoramic view displaying the world beyond the scene.

The following image shows two shots of the skybox from the outside, looking
through the back of the cube. Usually the camera and all the other 3D objects in the
scene will be enclosed by the skybox, but from the outside you can get a sense of
how the six sides of the cube can be used to enclose the scene.

The skybox on the left has had some simple numbered bitmap materials applied to
each of its sides. This makes it easy to see how the materials passed into the skybox
constructor map to the final result. The skybox on the right has had some specially
formatted skybox textures applied to it. This is how a skybox would look in an
actual Away3D application.

The initsSkybox () function is used to create and display an instance of the
Skybox class.

protected function initSkybox() :void
{
currentPrimitive = new Skybox(
new BitmapFileMaterial ("two.jpg"),
"one.jpg"),
"four.jpg"),

new BitmapFileMaterial
new BitmapFileMaterial

new BitmapFileMaterial

(
(

new BitmapFileMaterial ("three.jpg"),
("five.jpg"),
(

new BitmapFileMaterial ("six.jpg")

scene.addChild (currentPrimitive) ;

[62]

http://www.zshareall.com

Chapter 2

The skyBox class does not take an init object. Instead, it takes six parameters, each
one defining a material to be displayed on each of the six sides of the cube. These
parameters are listed in the following table:

Parameter Data Type Default Description
Value

front Material The material to use for the front side of
the skybox.

left Material The material to use for the left side of the
skybox.

back Material The material to use for the back side of
the skybox.

right Material The material to use for the right side of
the skybox.

up Material The material to use for the top side of the
skybox.

down Material The material to use for the bottom side of
the skybox.

Skybox6

The skyboxeé class is used to create a skybox, just like the skyBox class. The only
difference is that it takes one material divided into two rows and three columns
(much like the cube class when the mappingType parameter is set to mapé), with

each of the six segments then being applied to one of the six sides of the cube.

The following figure is a sample of a texture that can be used with the skyBox6 class:

The initskyboxsé () function is used to create and display an instance of the

Skybox6

prot

{

cu

112

3

415

6

class.

ected function initSkyboxé6 () :void

rrentPrimitive = new Skyboxé (
new BitmapFileMaterial ("map6.jpg")

[63]

Creating and Displaying Primitives

)i
scene.addChild (currentPrimitive) ;

}

The skyBoxé class does not take an init object. Instead, it takes a single parameter
defining the material to be displayed on the cube.

Parameter Data Type Default Value Description

material Material The material to use for the skybox.

Sphere

The sphere class is the second class that can be used to create a spherical 3D object.

The initsphere () function is used to create and display an instance of the
Sphere class.

protected function initSphere() :void

{

currentPrimitive = new Sphere() ;
scene.addChild (currentPrimitive) ;

}

[64]

Chapter 2

The following table lists the init object parameters accepted by the sphere class:

Parameter Data Type Default Value Description

radius Number 100 Defines the radius of the sphere.

segmentsW int 8 Defines the number of horizontal
segments that make up the sphere.

segmentsH int 6 Defines the number of vertical
segments that make up the sphere.

yUp Boolean true Determines if the triangle should
be oriented to point up along the
Y-axis.

It has already been noted that the Geodesicsphere class produces a more uniform
sphere than the sphere class. So why would you use the sphere class? The answer
become apparent when you apply a bitmap material to 3D objects created using both
classes. The following is a screenshot of a 3D object created by the Sphere class. As
you can see, the material is neatly applied across the surface of the sphere.

————

[65]

Creating and Displaying Primitives

Compare this with how the same material is applied to a 3D object created with the
GeodesicSphere class.

It's clear that while the GeodesicSphere class may produce a higher quality mesh,
the UV coordinates are a bit of a mess. On the other hand, the sphere class will
apply a material in a much more consistent and usable fashion.

However, this is only an issue when using bitmap materials. When using simple
materials like WireframeMaterial, WireColorMaterial, or ColorMaterial, the
GeodesicSphere class may be the better choice.

Torus
The Torus class creates a doughnut-shaped 3D object.

[66]

http://www.zshareall.com

Chapter 2

The initTorus () function is used to create and display an instance of the
Torus class.

protected function initTorus () :void

{

currentPrimitive = new Torus (

{

radius: 75,
tube: 30

}
) ;
scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the Torus class:

Parameter Data Type Default Description

Value
radius Number 100 Defines the overall radius of the torus.
tube Number 40 Defines the tube radius of the torus.

This parameter cannot be larger than the
radius parameter.

segmentsR int 8 Defines the number of radial segments
that make up the torus.

segmentsT int 6 Defines the number of tubular segments
that make up the torus.

yUp Boolean true If true, the torus will be created lying on
the X/Z plane. If false, it will be created
lying on the X/Y plane.

Triangle

The Triangle class is built from a single triangle face. Like the Plane and
RegularPolygon classes, instance of the Triangle class will not be visible from the
rear unless the bothsides init object parameter is set to true.

[67]

http://www.zshareall.com

Creating and Displaying Primitives

The initTriangle () function is used to create and display an instance of the
Triangle class.

protected function initTriangle () :void

{

currentPrimitive = new Triangle (

{

bothsides: true

}
) ;

scene.addChild (currentPrimitive) ;

}

The following table lists the init object parameters accepted by the Triangle class:

Parameter Data Type Default Value Description
edge Number 100 Sets the size of the triang]le.
yUp Boolean true If true, the triangle will be created

lying on the X/Z plane. If false, it will
be created lying on the X/Y plane.

Trident

The Trident class creates three-colored arrows that represent the X, Y, and Z axes.
If the showLetters parameter is set to true each of these axes will also be labeled. It
is very useful for debugging, as it can be used to show the orientation of a 3D object.
Chapter 3, Moving Objects, explains how the orientation of a 3D object can affect the
results of certain functions.

[68]

Chapter 2

The initTrident () function is used to create and display an instance of the
Trident class.

protected function initTrident () :void
currentPrimitive = new Trident (100) ;
scene.addChild (currentPrimitive) ;

}
}

The Trident class constructor does not take an init object. The following two
parameters in the table are passed directly to the constructor as regular parameters.

Parameter Data Type Default Value Description
len Number 1000 The length of the trident axes.
showLetters Boolean false Defines whether the trident should

display the letters X Y and Z.

Summary

All 3D objects are constructed using a number of basic elements: vertices, triangle
faces, sprite3D objects, and segments. These elements are then combined and added
to a Mesh object to create more complex shapes, and we saw some example code that
demonstrated how this can be done manually.

Texture maps are applied to the surface of a 3D object using UV coordinates, which
define how a texture map is displayed by a triangle face.

Away3D includes a number of classes that allow primitive shapes like cubes, cones,
spheres, and planes to be easily created without having to manually construct them
from their basic elements. A sample application was presented that demonstrated
how these primitive 3D objects can be created and added to the scene. The differences
between similar primitives, like the sphere and geodesic sphere, were highlighted.

We also touched on some additional topics that will be covered in more detail in
later chapters. The cube and skybox classes have some unique ways of applying
materials, and the sphere classes showed some significant differences in the way they
applied materials. For these classes, we used the BitmapFileMaterial class, which
will be covered in more detail in Chapter 5, Materials.

The sample application also made use of the rotationX, rotationY, and rotationz
properties from the Object3D class to modify the orientation of the primitive 3D
objects. These parameters are explored in the next chapter, in which we will learn
how to move, rotate, and scale 3D objects within the scene.

[69]

Moving Objects

3D objects within a scene can be animated in a number of ways. We touched on

this topic in Chapter 2, Creating and Displaying Primitives, where the primitive 3D
objects created by the PrimitivesDemo application were rotated by modifying their
rotationX, rotationY, and rotationZ properties. Moving, scaling, and/or rotating
a 3D object can also be referred to as transforming a 3D object. This chapter will
explore in greater detail how 3D objects can be transformed within a scene.

This chapter covers the following topics:

o The different coordinate systems
e Transforming 3D objects by modifying their position, rotation, and scale
e Transforming 3D objects using the TweenLite library

e Nesting 3D objects

Global, parent, and local coordinate
systems

In Chapter 1, Building Your First Away3D Application, we saw how 3D objects are
positioned in the scene using coordinates along the X, Y, and Z axes. In Away3D,
these coordinates can be described from three points of reference: global, parent, and
local coordinates. Understanding the difference between them is important because
all movement, rotation, and scaling operations in Away3D work relative to one of
these three coordinate systems.

Moving Objects

World space

The global coordinate system represents points or vectors relative to the origin
of the scene. This coordinate system can also be referred to as world space. The
following image shows the sphere from the example application presented in
Chapter 1, Building Your First Away3D Application.

The following is the code that was used to create the sphere:

var sphere:Sphere = new Sphere (

{

x: 0,
y: OI
z: 500

)i

The init object supplied to the Sphere class constructor has set the initial position of
the sphere to be at (0, 0, 500). This position is relative to the position of the 3D object's
parent container. In this case, the sphere has been added as a child of the scene.

scene.addChild (sphere) ;

Because the sphere was added as a child of the scene, the position of the sphere will

be relative to the scene. This means that the position of the sphere in world space is
(0, 0, 500).

[72]

Chapter 3

Parent space

The parent coordinate system is used to represent points or vectors that are relative
to the position and orientation of a 3D objects parent container. This coordinate
system is also known as parent space.

It was noted in the previous section that the position assigned to a 3D object via the
x, v, and z properties is relative to the position of its parent container. When the
parent of a 3D object is the scene (as has been the case with the examples presented
to this point), parent space and world space are the same. However, the scene is not
the only container that can hold 3D objects as children. The scene3D class extends
the ObjectContainer3D class, and it is the ObjectContainer3D class that defines the
addchild () function that we have been using to add 3D objects to the scene. So, just
as we have used the scene3D object as a container for our 3D objects, so too can we
use the ObjectContainer3D object.

Let's create a new application called GroupingExample, which extends the
Away3DTemplate class from Chapter 1, Building Your First Away3D Application.

package

{
The ObjectContainer3D class is imported, making it available in the class.

import away3d.containers.ObjectContainer3D;
import away3d.primitives.Sphere;

public class GroupingExample extends Away3DTemplate

{

public function GroupingExample ()

{

super () ;

}

We override the initScene () function to create an ObjectContainer3D object with
a position of (0, 0, 500), and add it as a child of the scene. The container itself has no
visual representation, so even though we have added it to the scene, the container
will not be visible.

protected override function initScene () :void

{

super.initScene () ;

var container:0bjectContainer3D = new ObjectContainer3D (

{

x: 0,

[73]

Moving Objects

y: 0,
z: 500

}
)i

scene.addChild (container) ;

Next, we create a new Sphere object, but this time we set the position to be (0, 0, 0).
This will position the sphere at the origin of its parent.

var sphere:Sphere = new Sphere (

Now, instead of adding the sphere as a child of the scene, we add it as a child of
the container.

container.addChild (sphere) ;

}
}
}

The following image shows how the sphere is now positioned within the scene.
The position of the container in parent space is (0, 0, 500). Since the parent of the
container is the scene, the position of the container in world space is also (0, 0, 500).

The position of the sphere in parent space is (0, 0, 0). Given that the global position
of the sphere's parent container is (0, 0, 500), and the sphere sits at the origin of its
parent container, the global position of the sphere is (0, 0, 500).

Y
4

[74]

Chapter 3

Local space

The local coordinate system is used to represent points and vectors relative to the
orientation of an individual 3D object. This coordinate system is also known as
local space. A number of functions to move, rotate, and scale a 3D object operate
in local space.

To demonstrate this let's create a new example called LocalAxisMovement.

package

{

import away3d.primitives.Sphere;

public class LocalAxisMovement extends Away3DTemplate

{

public function LocalAxisMovement ()

{

super () ;

protected override function initScene() :void

{

super.initScene () ;

A new sphere primitive is created, positioned, and added to the scene.

var sphere:Sphere = new Sphere (

{

x: 0,
y: OI
z: 500

}
)
scene.addChild (sphere) ;

[751]

Moving Objects

At this point, the sphere is sitting 500 units along the global Z axis, as shown in the
following image:

We will rotate the sphere around the Y axis by negative 90 degrees. This has the
effect of modifying the orientation of the sphere's local axes.

sphere.rotationY = -90;

The following image shows how the sphere's local axes are now oriented compared
to the global axes:

Local Y

Local Z Z

Local X

v
>

[76]

Chapter 3

The moveForward () function will move the sphere along its local Z axis.

sphere.moveForward(50) ;

}
}

The final position of the sphere is shown in the following image. Note the movement
of the sphere along its local Z axis (indicated by the red arrow) — the positive end of
the Z axis is generally considered to be the forward direction in Away3D.

v
=

[771]

Moving Objects

Transformation functions / properties
and their coordinate systems

The following table shows the coordinate systems used by each of the functions and
properties defined in the Object3D class that can be used to transform a 3D object:

Function / Property World Space Parent Space Local Space
POSITION

scenelPosition

X *
y

z

position
moveForward
moveBackward *
movelLeft *
moveRight *
moveUp

moveDown

translate

moveTo *
ROTATION

scenePivotPoint *

pivotPoint
movePivot
rotationX

rotationY *
rotationZ *
rotateTo *
lookAt *
eulers
pitch

roll *
yaw

rotate *

[78]

Chapter 3

Function / Property World Space

Parent Space

Local Space

SCALE

scaleX

scaleY

scaleZ

scale
TRANSFORM
sceneTransform

transform

Modifying position
We have already seen how to set the position of a 3D object via the %, y, and z

properties. Away3D includes a number of additional properties and functions
that can also be used to move a 3D object within the scene.

The X, y, and z properties

The initial position of a 3D object can quite often be specified with the %, y, and =z
properties of the init object. This method has already been used in previous examples
presented in the book. This method sets the position properties once when 3D object
is created, rather than letting them be set to a default value and then later modifying
them, making this the most efficient, and therefore preferred, way to define the initial
position of a 3D object.

var sphere:Sphere = new Sphere (

{

x: 10,
y: 20,
z: 30
1 While a number of Away3D classes accept an init object, as we saw with

the Trident class in Chapter 2, Creating and Displaying Primitives, this is

Q not always the case.

[79]

Moving Objects

The position of a 3D object can also be specified by setting %, y, and z properties
of the object itself once it is created.

var sphere:Sphere = new Sphere() ;
sphere.x = 10;
sphere.y = 20;
sphere.z = 30;

The position of a 3D object is always set relative to the position of its parent. This is
true for the %, y and z properties, and the position property. It is possible to find
the position of a 3D object within the scene (or the world position) by accessing the
scenePosition property, however this is a read-only property.

The position property
The position property can be set with a Vector3p object, which specifies the
position of the 3D object relative to its parent on the X, Y, and Z axes all at once.

var sphere:Sphere = new Sphere() ;
sphere.position = new Vector3D(10, 20, 30);

The move functions

The moveForward (), moveBackward (), moveLeft (), moveRight (), moveUp (), and
moveDown () functions can all be used to move a 3D object by a specified distance,
relative to the 3D object's local axes. The following image shows how these directions
relate to the local X, Y, and Z axes.

Positive Y - Up
A

Positive Z - Forward

Negative X - Left » Positive X - Right

Negative Z - Backward

Negative Y - Down

[80]

Chapter 3

The following code moves a primitive cube 3D object 10 units forward, 20 units
to the right, and then 30 units down:

var cube:Cube = new Cube() ;
cube.moveForward (10) ;

cube .moveRight (20) ;

cube .moveDown (30) ;

The individual movements are shown in the following image:

Positive Y - Up
A

Positive Z - Forward

2. Move right 20

1. Move forward 10
Negative X - Left

» Positive X - Right

v

Negative Z - Backward 3. Move down 30

Negative Y - Down

The moveTo() function

The moveTo () function works in much the same way as the position property in
that it can be used to set the position of a 3D object relative to its parent along all
three axes at once.

The call to the moveTo () function in the following example achieves the same result
as assigning a Vector3D object with the values (20, -30, 10) to the position property.

var cube:Cube = new Cube() ;
cube.moveTo (20, -30, 10);

[81]

Moving Objects

The translate() function

The translate () function is used to move a 3D object along an arbitrary vector in
local space.

The first parameter, axis, defines the direction to move. The length of the vector is
not used when calculating the distance to move (it is normalized, or modified so it
has a length of one unit, by the translate () function). It is the second parameter,
distance, which defines how far along the vector the 3D object will move.

The following example would move the cube to the same position as the other move
functions shown previously. We know that the axis vector will result in the cube
moving the same direction as it was moved in the other examples because we have
constructed it using the same values for the X, Y, and Z axes (that is, 20, -30, and 10).
We constructed it using these values for convenience; remember that, because it is
normalized, it is only the direction that these vector points count. If we had specified
a vector of (2,-3, 1) or (2/3, -1, 1/3), the end result would be exactly the same.

So we know that the axis vector only defines the direction in which to move, and
not how far to move. Therefore, to move the cube to the same final position as the
other move examples, we need to know the length of the vector (20, -30, 10). We can
calculate this using Pythagoras' theorem, which states that the length of a vector can
be calculated as the square root of the sum of the squared lengths of its component
axes. From this we can calculate the length using the code Math.sqgrt (20%20 + -
30%-30 + 10*10) (or simply Math.sqgrt (1400)).

var cube:Cube = new Cube () ;
cube.translate (new Vector3D(20, -30, 10), Math.sqgrt(1400)) ;

Modifying rotation
Away3D includes over a dozen functions and properties that can be used to rotate
a 3D object.

The rotation init object parameters

The initial rotation of a 3D object can quite often be specified using the rotationx,
rotationY, and rotationZ init object parameters. These values represent the
rotation of a 3D object around the X, Y, and Z parent space axes, and are measured
in degrees.

[82]

Chapter 3

N Away3D functions that accept an angle will usually use degrees.
~ Flash functions like Math.sin, Math.cos, and Math. tan all work
Q with radians. Be mindful of how angles are measured when using
different functions.

You can convert radians to degrees using the formula:

degrees = radians * 180 / pi
~ And degrees into radians using the formula:

radians = degrees / 180 * pi

var sphere:Sphere = new Sphere (

{

rotationX: 10,
rotationY: 20,
rotationZ: 30

}
) ;

The rotation properties

The rotation of a 3D object can also be specified by setting the rotationx,
rotationy, and rotationz properties of the object itself once it is created.

var sphere:Sphere = new Sphere() ;

sphere.rotationX = 10;
sphere.rotationY = 20;
sphere.rotationZ = 30;

The rotateTo() function

The rotateTo () function can be used to set the rotation around the parent X, Y, and
Z axes with one function call. The following example code achieves the same end
result as setting the rotationX, rotationy, and rotationz properties individually
as described previously.

var sphere:Sphere = new Sphere() ;
sphere.rotateTo (10, 20, 30);

[83]

Moving Objects

The eulers property

The eulers property is much the same as the rotateTo () function, except that it
takes a single vector3D object instead of three individual Numbers.

var sphere:Sphere = new Sphere() ;
sphere.eulers = new Vector3D(10, 20, 30);

The rotate() function

The preceding rotation functions all work by rotating a 3D object around the parent
X, Y, and Z axes. By combining rotations around these fixed axes you can rotate

a 3D object to any desired position. However, in some situations it is easier and
quicker to rotate a 3D object around a single arbitrary axis. The rotate () function
can be used to do just this.

The following code will rotate the sphere 90 degrees around the local space
vector (1, 0, 1).

var sphere:Sphere = new Sphere() ;
sphere.rotate (new Vector3D(1, 0, 1), 90);

The lookAt() function

The lookat () function can be used to point the local Z axis of a 3D object towards
a position in parent space, defined by the first parameter called target, while
optionally defining the roll of the 3D object once it has been rotated to face the
desired position with the second parameter.

This second parameter is called upaxis. This vector, in parent space, is used in
conjunction with the local Z axis of the 3D object once it has been rotated to face the
target position to define a plane. The 3D object is then oriented so its local Y axis lies
on this plane, while also being at right angles to the local Z axis.

[84]

Chapter 3

If the upaxis parameter is not supplied, a default value of vector3p (0, -1, 0)
will be used.

lookAt upAxis vector
A
Resulting local Y axis

The local Y, local Z and upAxis
vectors all lie on the same plane

Resulting local Z axis
90°
lookAt target position

The following code will rotate the camera so that it is looking at a position (10, 20, 30)
units from the origin of the camera's parent container.

camera.lookAt (new Vector3D(10, 20, 30));

The pivotPoint property

By default, the rotation functions and properties detailed so far will rotate a 3D object
around the axes of its parent container, or a vector in parent space, as if the 3D object
were sitting at the origin of that parent container. The cube in the following image,
seen from above, has been rotated 45 degrees around the Y axis.

4

‘o
S

[85]

Moving Objects

It is also possible to rotate a 3D object around an external point, known as the pivot
point, much like the pendulum in an old grandfather clock. The position of the pivot
point can be defined by assigning a Vector3D object to the pivotPoint property.
The position of the pivot point is defined in local space. Here we have set the pivot
point 200 units to the right of the cube.

var cube:Cube = new Cube() ;
cube.pivotPoint = new Vector3D(200, 0, 0);
cube.rotationY = 45;

scene.addChild (cube) ;

Now instead of rotating "in place" when the cube is rotated 45 degrees around the
Y axis, it will rotate around the new pivot point to the right.

\j Pivot point

The movePivot() function

The movePivot () function can also be used to set the position of the pivot point.
The difference between the pivotPoint property and the movePivot () function
is that you do not have to create an intermediary vector3D object when using the
movePivot () function.

The following code has the same effect as setting the pivotPoint property at a
position of (200, 0, 0).

var cube:Cube = new Cube() ;
cube.movePivot (200, 0, O0);
cube.rotationY = 45;
scene.addChild (cube) ;

[86]

Chapter 3

The scenePivotPoint property

The scenePivotPoint property provides a way to find the position of the pivot
point in world space. The scenePivotPoint property is read-only, so you can not
assign a new position for the pivot point through it.

var cube:Cube = new Cube();
cube.movePivot (200, 0, 0);
var scenePivot:Vector3D = cube.scenePivotPoint;

The pitch(), roll(), and yaw() functions

The pitch(), yaw(), and roll () functions rotate the 3D object around the local X,
Y, and Z axes respectively. These concepts are easy to visualize if you apply them to
a camera. Modifying the pitch will make the camera look left and right. Modifying
the yaw will make the camera look up and down. Modifying the roll would be like
turning the camera upside down.

Y
A
Z
Yaw
L2
Roll
Pitch
b

v
>

2

var sphere:Sphere = new Sphere() ;
sphere.pitch(90) ;

sphere.yaw(90) ;

sphere.roll (180) ;

[87]

Moving Objects

Modifying scale
Scaling a 3D object involves modifying its dimensions along its local axes. A 3D

object can be scaled uniformly along all three local axes, or along the local X, Y,
or Z axis individually.

The scale init object parameter

The initial scale of a 3D object along all its local axes can quite often be specified with
the scale init object parameter. This scales the 3D object uniformly along all three
axes. In this example, we have scaled the sphere to twice its default size.

1
‘Q You can also supply negative numbers to these scale functions and

properties, which has the effect of turning a 3D object "inside out".

var sphere:Sphere = new Sphere (

{

scale: 2

}

The scale() function

The scale () function will apply a uniform scale to all the local axes at once. This
achieves the same result as the scale init object parameter, and can be used on
those 3D objects that do not implement init objects.

var sphere:Sphere = new Sphere() ;
sphere.scale(2) ;

The scaleX, scaleY, and scaleZ properties

The scale of a 3D object along its individual local axes can be specified by setting
scaleX, scaleY, and scaleZ properties. Here we have used these three properties to
scale a 3D object by a factor of two along the X axis, by a factor of 3 along the Y axis,
and by a factor of 4 along the Z axes.

var sphere:Sphere = new Sphere() ;
sphere.scaleX = 2;
3;
4;

sphere.scaleY

sphere.scaleZ

[88]

http://www.zshareall.com

Chapter 3

Modifying the transform

The end result of the positioning, rotating, and scaling a 3D object can be described
as a single 4x4 matrix called the transform matrix.

\ Even though we only work in three dimensions, a 4x4

~ matrix is required to contain the information used by all
Q the transformations supported by Away3D, including
scaling, rotations, and translations, in a single matrix.

Matrices are represented by the Matrix3D class in the f1ash.geom package. It is
possible to manipulate a transform matrix directly, and then pass it to a 3D object via
the transform property defined in the 0bject3D class. However, it is generally more
convenient to use the listed functions to transform a 3D object rather than modifying
the transform matrix directly.

Tweening

In a number of the applications presented so far, the 3D objects in the scene have
been transformed slightly each frame inside the onEnterFrame () function. Another
common method for modifying the properties of an object over time, including
those properties that define the transformation of 3D objects, is called tweening.
There are a number of free libraries that can perform tweening operations, one of
which is the GreenSock TweenLite library. TweenLite can be downloaded from
http://www.greensock.com/tweenlite/.

M Although it can be freely downloaded, TweenLite does
Q have some licensing restrictions, which you can view at
http://www.greensock.com/licensing/.

In order to use the TweenLite library it has to be added to the Source path in
Flex/Flash Builder and Flash CS4, or the Project Classpaths in FlashDevelop, just as
we did with the Away3D library in Chapter 1, Building Your First Away3D Application.

[89]

Moving Objects

Tweening libraries have a lot of functionality (and too much to cover in this
book), but implementing a simple tweening operation is fairly straightforward.
To demonstrate how TweenLite can be used with a 3D object we will create an
application called TweeningDemo.

package

{
import flash.geom.Vector3D;
import away3d.primitives.Sphere;

The TweenLite class is imported to make it available in the TweeningDemo class.

import com.greensock.TweenLite;

public class TweeningExample extends Away3DTemplate

{

protected var sphere:Sphere;

public function TweeningExample ()

{

super () ;

}

protected override function initScene() :void

{

super.initScene () ;

The camera is positioned 2,000 units up along the positive end of the Y axis, and
2,000 units down the negative end of the Z axis. We then call the 1ookat () function
to orient the camera so it is looking at the origin of the scene. Positioning and
orienting the camera in this allows us to view the X/Z plane from above at a

slight angle. This is perfect for viewing the sphere, which will be moving across
the X/Z plane.

camera.position = new Vector3D(0, 2000, -2000);
camera.lookAt (new Vector3D(0, 0, 0));

A sphere primitive is created and added to the scene. Because we did not specify a
position in the constructor, the sphere will initially be positioned at the scenes origin.

sphere = new Sphere() ;
scene.addChild (sphere) ;

[90]

Chapter 3

The tweenToRandomPosition () function is then called to initialize the first
tweening operation.

tweenToRandomPosition () ;

}

protected function tweenToRandomPosition () :void

{

In the tweenToRandomPosition () function we make a call to the static to () function
defined by the TweenLite class. The to () function is used to progressively modify
the properties of an object over time.

The first parameter, target, is the object that will be modified by the tweening
operation. In this case that object is our sphere.

The second parameter, duration, defines how long the tweening operation will
take in seconds. By supplying a value of 1 here the properties of the sphere will be
progressively modified from their current values to new values that we define over
a period of one second.

TweenLite.to (sphere, 1,

{

The third parameter, vars, is an object that has been created with object literal
notation. This is the same way that the init objects used by Away3D are created. In
this object we assign the values that we want the 3D object to have once the tweening
operation is complete. The properties x, z, scaleX, scaleY, scaleZ, and rotationy
relate to properties that are exposed by the Sphere class. In this example, we have
assigned random values to these properties.

The final property of the vars object, onComplete, is a special property that is
recognized by the TweenLite class. Any function assigned to this property will
be called once the tweening operation is complete. Here, we have assigned the
tweenToRandomPosition () function. Since this tweening operation is created in
the tweenToRandomPosition () function, this has the effect of creating an endless
sequence of tweening operations. As one tweening operation is completed, the
tweenToRandomPosition () function is called and a new one is started.

[91]

Moving Objects

Sequencing a number of tweening operations using the onComplete property can create
some very complex movements or scripted operations.

x: Math.random() * 1000 - 500,

z: Math.random() * 1000 - 500,
scaleX: Math.random() * 1.5 + 0.5,
scaleY: Math.random() * 1.5 + 0.5,
scaleZ: Math.random() * 1.5 + 0.5,
rotationY: Math.random() * 180,
onComplete: tweenToRandomPosition

When this application is run, the sphere will move around the scene to random
positions within -500 to 500 units along the X and Z axes. The scale of the sphere
is modified to be within 0.5 to 2 times its original size, while its rotation around its
local Y axis is set anywhere between 0 and 180 degrees.

One of the best things about tweening operations is that they tend to be "fire and
forget". You don't have to keep a track of how much time has passed and manually
modify the properties every frame, as has been done in previous applications in
the onEnterFrame () function. In fact, you will notice that we have not used the
onEnterFrame () function at all in this example.

TweenlLite includes a lot more functionality than has been covered by this

book, and indeed the TweenMax library, also from GreenSock, includes

more functionality still. To explore these additional features, you can

use the interactive demos found on the GreenSock website (http://

~ www . greensock . com), which allow you to modify the position, scale,
rotation, and more of a 2D object on the screen. Just remember that
tweening libraries generally have no inherent concept of 2D or 3D —they
just modify the values of given properties over time. The only difference
between tweening a 2D object and a 3D object is the modification of
properties relating to the third dimension along the Z axis.

Nesting

As we saw with the parent coordinate system, it is possible to add 3D objects to a
parent container other than the scene. Adding 3D objects to parent containers in
this way is referred to as nesting. Nesting is used to transform a group of 3D objects
simultaneously. A parent container can be moved, scaled, or rotated, which in turn
will transform its children 3D objects.

[92]

Chapter 3

Let's see a practical example of nesting in action. Imagine you were creating a shoot
'em up style of game where each space ship can be matched with a variety of guns,
with each gun represented by a distinct 3D object. While this could be achieved by
providing a separate model for combination of ship and gun, such an approach
would quickly become unworkable as the number of combinations increased. If you
had five ships, and each ship should be matched with six guns, you would need to
supply 30 individual models.

A better solution would be to model each of the ships and the guns separately, and
combine them at runtime to form the necessary combinations.

Here is a screenshot of the gun:

Here is a screenshot of the ship:

[93]

Moving Objects

And here is a screenshot of the ship and the guns combined:

The following Nest ingDemo class demonstrates how the ship and gun 3D objects
shown in the screenshots can be added to a container so they can be transformed
as a single group.

package

{

import away3d.containers.ObjectContainer3D;
import away3d.core.base.Mesh;

The cast class provides a convenient way to cast objects between types. In this
example, it is used in conjunction with the BitmapMaterial class, which will be
used to apply a material the 3D objects that we will be adding to the scene.
Materials are covered in more detail in Chapter 5, Materials.

import away3d.core.utils.Cast;
import away3d.materials.BitmapMaterial;

import flash.events.Event;

public class NestingDemo extends Away3DTemplate

{

The texture.jpg file has been embedded, and can be accessed via the Texture class.

[Embed (source="texture.jpg")]
protected var Texture:Class;

[94]

Chapter 3

The container property will reference the parent container that the ship and gun
models will be added to.

protected var container:ObjectContainer3D;

public function NestingDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;

In the initScene () function, we create a new BitmapMaterial object. This will then
be applied to the ship and gun 3D objects.

var material:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (Texture)) ;

The Fighter class is a complex 3D object that has been exported to an ActionScript
class. This is similar to the seaTurtle class that was covered in Chapter 2, Creating
and Displaying Primitives. It will be referenced by the £ighter variable, and is used
to represent the space ship. Exporting models to ActionScript classes is covered in
Chapter 6, Models and Animations.

var fighter:Mesh = new Fighter() ;
The material is then applied to the 3D object.

fighter.material = material;

The gun 3D objects are created in much the same way as the ship. We create a new
instance of the Gun class, and apply the material to it.

var gunl:Mesh = new Gun() ;
gunl.material = material;

In this case, the tool used to export the Gun class created it in such a way that the init
object is not passed to the base Mesh class. This means the position of the 3D object
cannot be set using an init object, so the position is instead set via the %, y, and z
properties after the object has been created.

gunl.x = -150;
gunl.y = 75;
gunl.z = -115;

[95]

Moving Objects

The ship has two guns, so we create a second instance of the Gun class. This second
gun is positioned on the opposite side of the X axis.

var gun2:Mesh = new Gun() ;
gun2.material = material;
gun2.x = 150;

gun2.y = 75;

gun2.z = -115;

At this point, we have three 3D objects: one ship and two guns. We want to be
able to work with these three 3D objects as if they were a single item. This is
where nesting is useful. First we create a new container, and add the separate
3D objects as children by supplying them as the first three parameters of the
ObjectContainer3D constructor.

container = new ObjectContainer3D (
fighter, gunl, gun2,

You could also add each of the 3D objects to the ObjectContainer3D
\l object once the container has been created using code like the following:

~

Q container.addChild (fighter) ;
container.addChild (gunl) ;
container.addChild (gun2) ;

The final parameter is an init object, which will set the position of the container
2,000 units along the positive end of the Z axis.

{

z: 2000

!
)i

scene.addChild (container) ;

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

[96]

Chapter 3

By nesting the ship and gun 3D objects in a container, they can now be transformed
as a single group. In fact, we have already moved the 3D objects as a group by
specifying the initial position of the container when it was constructed. The
onEnterFrame () function also transforms the 3D objects as a group by modifying
the rotation of the container.

++container.rotationX;

++container.rotationZ;

}
}
}

When you run the application, you will see that the ship and gun 3D models
maintain their position relative to each other within the parent container while
the parent container is moved and rotated.

Summary

The transformation of a 3D object takes place within three distinct coordinate
systems or spaces. Coordinates in world space are defined relative to the scene,
coordinates in parent space are defined relative to a 3D object's parent container,
while coordinates in local space are defined relative to an individual 3D object.

Away3D includes over a dozen functions and properties that can be used to modify
the position, rotation, and scale of 3D objects. Each of these functions transforms a
3D object within one of the three coordinate systems.

Tweening can be used to modify the properties of an object over time, and we saw an
example of how the TweenLite library can be used to transform a 3D object without
having to manually transform it every frame using the onEnterFrame () function.

Finally, we saw how nesting can be used to transform a group of 3D objects
simultaneously by placing them in a container, like the 0bjectContainer3D class,
and then transforming the container.

[97]

Z-Sorting

Correctly sorting 3D objects within a scene is critical to being able to draw the scene
on the screen correctly. Away3D uses what is known as the painter's algorithm to
draw the elements that make up the scene to the screen, and it is very easy to take
this process for granted, as most of the time Away3D will draw these elements

in the correct order. However, there are certain situations where it is necessary to
tweak the order in which Away3D sorts the 3D objects within the scene. This chapter
demonstrates one such situation, and presents the methods that are available

to manually correct the sorting process.

Away3D also includes some additional renderers that can be used to automatically
correct the sorting order of the 3D objects within the scene. These renderers are
demonstrated, and their implications on the performance of an Away3D application
are explored.

This chapter covers the following:

e The painter's algorithm
e How the scene is sorted
e How to influence or force the sorting order of 3D objects

e The additional renderers

Z-Sorting

The painter's algorithm

The painter's algorithm refers to a technique employed by many painters in which
the most distant parts of a scene are painted first, with the closer parts of the scene
then being progressively painted over the top. The following image, from the
Wikipedia article on the subject, shows the steps that are taken to paint an

outdoor scene.

The mountains, being furthest back in the scene, are painted first. The ground and
shrubs are then painted, and finally the trees are painted over both.

Z-Sorting, or depth sorting, is a technique that is used to sort the elements that make
up a 3D object based on how far away they are when viewed by the camera. This
then allows these 3D object elements to be rendered to the screen using the painter's
algorithm, in order from those furthest back in the scene to those that are the closest.

For the most part, this algorithm works fine and there are no additional steps that
need to be taken to render the 3D object elements in the correct order. However,
there are situations where this algorithm fails. To understand how the painter's
algorithm can fail, we first need to look at how the elements that make up a

3D object are sorted within the scene.

Sorting the scene

The distance of each element within the scene is determined by a single value,
known as the z depth. The z depth value is calculated using the average position of
each vertex that makes up an element along the camera's local coordinate Z-axis. An
easy way to visualize the camera's local space is to imagine that the camera is sitting
at the origin, and is looking directly towards the positive end of the Z-axis. This is
illustrated in the following image:

[100]

http://www.zshareall.com

Chapter 4

(0, 20, 100)

(-10, 0, 110)
(10, 0, 90)

v
>

The coordinates of the vertices that make up the triangle have been noted in the
image. These coordinates are in the camera's local space. To calculate the z depth, we
take the Z components of these coordinates (which are 110, 100, and 90), and average
them to give a final value of 100.

This single value of 100 is then used as the z depth the 2D representation of the
triangle, even though the depth of the individual vertices ranges from 90 to 110.
Sorting the 3D object elements by their z depths can lead to inconsistencies when the
single averaged z depth value does not accurately represent a drawing primitive's
relative position within the scene.

To demonstrate a situation where the 3D object elements are not sorted correctly,
let's create a new example called zZSorting. In the initScene () function we will
create two triangles, angled so that one appears to overlap the other from the
camera's viewpoint.

package

{

import away3d.primitives.Triangle;

public class ZSorting extends Away3DTemplate

{

public function ZSorting()

{

super () ;

}

protected override function initScene() :void

[101]

Z-Sorting

{
super.initScene () ;
camera.z = 0;
var triangleA:Triangle = new Triangle(
{
x: -30,
y: 0O,
z: 500,
rotationY: -5,
yUp: false,
bothsides: true

var triangleB:Triangle = new Triangle(

x: 30,
y: 0O,
Z: 499,
rotationY: 60,
yUp: false,
bothsides: true
}
)

scene.addChild(triangled) ;
scene.addChild(triangleB) ;

}
}
}

The following image is a top-down view of the scene. Triangle B has a slightly
smaller z depth than Triangle A, and the triangles do not intersect.

A

Point 1 —»
<+— 500 —» \
Triangle A

<+— 499 —» <+— Point 2
Triangle B

A

[102]

Chapter 4

The following image shows how the two triangles are drawn when the application
is run:

Triangle A

From the top-down view of the scene, it is clear that the triangle on the right
(Triangle B) should appear behind the one on the left (Triangle A). But because
Triangle B has a smaller z depth than Triangle A, Triangle B is considered to be
in front of Triangle A. This results in Triangle B being drawn last, over the top of
Triangle A. Here is a perfect example of where a single average z depth does not
accurately reflect the actual depth of the 3D objects in the scene.

Adjusting the sorting order

Away3D includes a number of methods that can be employed to adjust the order in
which the drawing primitives are rendered. In the example provided, the rendering
order can be fixed by either bringing Triangle A to the front of the scene, or by
forcing Triangle B to the back.

R The ZSortingExtended application available from the Packt
~ website provides an example that implements the following
Q procedures for correcting the sorting order of 3D objects in a
single demo.

The pushfront and pushback properties

The pushfront property forces a drawing primitive to be sorted based on the point
that is closest to the camera. For Triangle A, the closest point to the camera is Point
1. Because Point 1 is closer to the camera than the z depth of Triangle B, setting
pushfront to true for Triangle A will bring it to the front of the scene, meaning

it will be rendered last.

var triangleA:0bject3D = new Triangle (

{

xX: -30,

[103]

Z-Sorting

y: 0O,
z: 500,
rotationY: -5,
yUp: false,
bothsides: true,
pushfront: true
}
)

The pushback property does the opposite of pushfront, and forces a drawing
primitive to be sorted based on the point that is furthest away from the camera. For
Triangle B, the furthest point from the camera is Point 2. Because Point 2 is further
away than the z depth of Triangle A, setting pushback to true for Triangle B will
push it to the back of the scene, meaning it will be rendered first.

var triangleB:0bject3D = new Triangle (

{

x: 30,
y: 0,
z: 499,

rotation¥Y: 60,
yUp: false,
bothsides: true,
pushback: true

!
)i

The screenZOffset property

The screenzoffset property can also be used to force one triangle to be considered
further away from the camera than the other. Away3D will add the screenzoffset
value to the z depth, which allows you to adjust the relative depth of a 3D object
within the scene.

A positive screenzoffset increases the z depth, forcing a 3D object to be considered
to be more towards the back of the scene. A negative value will decrease the z depth,
forcing a 3D object to be considered to be closer to the front of the scene. Note that
setting the screenzoffset value will not change the position of the 3D object within
the scene, only the order in which it is drawn.

[104]

Chapter 4

To force Triangle A to be drawn on top of Triangle B we can specify a negative value
for the screenzof fset parameter. In the following example, Triangle A will have
a z depth of 490, placing it in front of Triangle B, which has a z depth of 499.

var triangleA:0Object3D

)i

{

}

x: -30,
y: O,
z: 500,

rotationY: -5,
yUp: false,
bothsides: true,
screenzZOffset: -10

= new Triangle(

To force Triangle B to be drawn on top of Triangle A, we can specify a positive value
for the screenzof fset parameter. In the following example, Triangle B will have
a z depth of 509, placing it behind Triangle A, which has a z depth of 500.

var triangleB:0bject3D

{

x: 30,
Y: Ol
z: 499,

rotationY: 60,
yUp: false,
bothsides: true,
ownCanvas: true,
screenzOffset: 10

= new Triangle (

The Away3D documentation states that the screenzoffset
M value will only have an effect on a 3D object if its ownCanvas
Q property is set to true. With Away3D version 3.6 this is incorrect.
The screenzOf fset will be applied regardless of whether the
ownCanvas property is true or false.

[105]

Z-Sorting

The ownCanvas property

The final way to force the sorting of 3D objects is to render them in their own canvas,
which is done by setting the ownCanvas property to true, and then forcing the depth
of that canvas.

A canvas is a layer into which 3D objects are drawn. They work in much the same
way as layers in image-editing software packages like Photoshop. 3D objects can be
rendered into a canvas, and the canvas is then drawn alongside any other 3D objects
that are in the scene.

First, we set the ownCanvas property to true.

var triangleB:0bject3D = new Triangle (
{
x: 30,
y: 0O,
Z: 499,
rotationY: 60,
yUp: false,
bothsides: true,
ownCanvas: true
}
) ;

Then, we set the screen depth of the canvas through the ownsession screenz
property. Because Triangle A is 500 units away from the camera, we can specify the
z depth of the canvas that will display Triangle B to be slightly more at 510. This will
mean that Triangle A is considered to be closer to the camera.

triangleB.ownSession.screenZ = 510;

The following image shows how the canvas is positioned. By giving the canvas onto
which Triangle B is drawn a larger screenz value that the z depth of Triangle A, we
have forced it to be drawn in the background.

Be careful when setting the depth of a canvas via the screenZ property,

because unlike the other methods of correcting the depth of a 3D object,
\l the screenZ property is an absolute value and does not take into account

~ the relative position of the camera. If the camera were at a position of

Q (0, 0, -1000), as it is by default, the preceding code would draw the

canvas that holds Triangle B in front of Triangle A, because the z depth of

Triangle A would be 1500, and the z depth of the canvas would be set to

the absolute value of 510.

[106]

Chapter 4

Triangle A

Triangle B
Canvas

If no screenZ value is specified, a canvas is ordered in the scene based
M on the z depths of the 3D objects that will be drawn into it. This means
Q that the order of a canvas in the scene can be modified by using the
pushfront, pushback, and screenzOf fset properties on the 3D
objects that will be drawn into it.

A note about Z-Sorting

All of the methods described above work by modifying the z depth of a 3D object
relative to the other 3D objects that are in the scene. It is important to realize that the
desired relative depth of these 3D objects will change depending on the position of
the camera. Consider the same scene created by the zsorting application, but now
viewed from the opposite side.

Triangle A

Ale B

In this situation, if we were to set the pushback property to true for Triangle B,
as we did to fix the rendering order when the camera was on the left, we would in
fact be introducing a z-sorting error rather than fixing it. This is because from the
camera's new position, Triangle B should be drawn in front of Triangle A, not
behind it.

[107]

Z-Sorting

So keep in mind that the values assigned to the pushback, pushfront,
screenzOf fset, and screenZ properties may need to be modified as the position
and orientation of the 3D objects within the scene are changed relative to the
position of the camera.

. An example of where it is necessary to adjust the value of the
< screenzOffset property for a 3D object, as its position relative to
Q the camera changes, is given in Chapter 10, Creating 3D Text, with
the Font Ext rusionDemo application.

Additional renderers

All the applications shown in this book have made use of the default renderer.
Away3D includes three different types of renderers, each returned by static
properties in the Render class from the away3d.core.render package.

The default renderer is created by the BAsIC property. The other two renderers,
created by the CORRECT z_ORDER and INTERSECTING_OBJECTS properties, are
quadtree renderers, which are more advanced than the default BASIC renderer.

The CORRECT Zz_ORDER renderer uses a more sophisticated algorithm for sorting 3D
objects in the scene, which can solve some (but not all) z-sorting issues that arise when
using the default renderer. The renderer returned by the INTERSECTING OBJECTS
property goes one step further by additionally splitting intersecting triangles.

Using these renderers is quite simple. First the Renderer class is imported.

import away3d.core.render.Renderer;

Then in the initEngine () function we pass the object returned from the Renderer
CORRECT_Z_ORDER Or INTERSECTING OBJECTS properties to the view3D constructor
via the renderer init object parameter.

protected function initEngine () :void
scene = new Scene3D() ;
camera = new Camera3D() ;
view = new View3D (

{

renderer: Renderer.INTERSECTING OBJECTS

}

[108]

Chapter 4

)i

scene = view.

scene;

camera = view.camera;

addChild (view) ;

view.x = stage.stageWidth / 2;

view.y = stage.stageHeight / 2;

}

The active renderer can also be changed at runtime by modifying the view3D

renderer property.

view.renderer =

Renderer.CORRECT Z ORDER;

The rRenderersDemo application allows you to change between the three renderers at
runtime by pressing 1, 2, or 3 on the keyboard, providing an opportunity to compare
how they deal with intersecting 3D objects.

package

{

import away3d.cameras.Camera3D;

import away3d.containers.Scene3D;

import away3d.containers.View3D;

import away3d.core.render.Renderer;

import away3d.materials.WireColorMaterial;

import away3d.primitives.Cube;

import away3d.primitives.Triangle;

import flash.
import flash.
import flash.
import flash.

public class

{

display.Sprite;
events.Event;
events.KeyboardEvent;
text.TextField;

RenderersDemo extends Away3DTemplate

private var triangle:Triangle;

private var box:Cube;

public function RenderersDemo () :void

{

[109]

Z-Sorting

super () ;

protected override function initScene () :void

{

super.initScene() ;
triangle = new Triangle (

{

edge: 150,

bothsides: true,

yUp: false,

material: new WireColorMaterial (0x224488),
Z: 500

}
)i
scene.addChild(triangle) ;

box = new Cube (

z: 500,

width: 50,

height: 75,

depth: 50,

material: new WireColorMaterial (0x228844)
)i
scene.addChild (box) ;

protected override function initListeners() :void
super.initListeners () ;
stage.addEventListener (KeyboardEvent .KEY UP, onKeyUp) ;

protected override function initUI() :void
super.initUI () ;
var text:TextField = new TextField() ;
text.text = "Press 1 to enbale the BASIC renderer.\n" +
"Press 2 to enable the CORRECT Z ORDER renderer.\n" +

[110]

Chapter 4

protected override function onEnterFrame (event:Event) :void

{

protected function onKeyUp (event:KeyboardEvent) :void

{

"Press 3 to enable the INTERSECTING OBJECTS renderer.\n" +

"Press 4 to make the box transparent.\n" +
"Press 5 to make the box opaque.";

text.x = 10;
text.y = 10;
text.width = 300;

this.addChild (text) ;

super.onkEnterFrame (event) ;

triangle.rotationY += 3;

box.rotationY -=

1;

switch (event.keyCode)

{

case 49:
view.renderer
break;

case 50:
view.renderer
break;

case 51:
view.renderer
break;

case 52:
(box.material
break;

case 53:
(box.material
break;

as WireColorMaterial) .alpha

as WireColorMaterial) .alpha

Renderer .BASIC;

Renderer.CORRECT Z ORDER;

Renderer.INTERSECTING OBJECTS;

[111]

Z-Sorting

In the following image, you can see the difference that the INTERSECTING_OBJECTS
renderer makes. With the default BAs1c renderer, shown on the left, the triangle
appears to be behind the cube, despite the fact that the two 3D objects are actually
intersecting. The INTERSECTING_OBJECTS renderer, shown on the right, will split
the individual triangle faces that make up the 3D objects in order to correctly render
the scene.

The scene created by the RenderersbDemo application is trivial, involving only a
single cube primitive and a single triangle primitive. In this case, switching between
the three renderers probably won't have a great deal of impact on the performance
of the application. But what happens in a more complex scene?

The RenderersPerformanceDemo application creates a number of spheres that
bounce around inside an invisible box. Just like the RenderersDemo application,
you can switch between the three renderers at runtime.

package
import away3d.core.render.Renderer;
import away3d.primitives.Sphere;
import flash.geom.Vector3D;

import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.text.TextField;

public class RenderersPerformanceDemo extends Away3DTemplate

{

protected static const SPEED:Number = 0.5;
protected static const BOXSIZE:Number = 20;

[112]

Chapter 4

protected static const NUMBERSPHERS:Number = 10;
protected var spheres:Vector.<Sphere> = new Vector.<Spheres>();

protected var directions:Vector.<Vector3D> = new
Vector.<Vector3D> () ;

public function RenderersPerformanceDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene (

for (var i:int =

{

)i
this.camera.z = 50;
0; 1 < NUMBERSPHERS; ++1i)

var sphere:Sphere = new Sphere (
x: Math.random() * BOXSIZE - BOXSIZE/2,
y: Math.random() * BOXSIZE - BOXSIZE/2,
z: Math.random() * BOXSIZE - BOXSIZE/2,
radius: 2

)i

spheres.push (sphere) ;

this.scene.addChild (sphere) ;

directions.push (new Vector3D(

Math.random() - 0.5,
Math.random() - 0.5,
Math.random() - 0.5)

)i
directions[i] .normalize () ;
directions[i] .scaleBy (SPEED) ;

protected override function initListeners() :void
super.initListeners () ;
stage.addEventListener (Event .ENTER FRAME, onEnterFrame) ;
stage.addEventListener (KeyboardEvent .KEY UP, onKeyUp) ;

[113]

Z-Sorting

protected override function initUI () :void
{
super.initUI() ;
var text:TextField = new TextField() ;
text.text = "Press 1 to enbale the BASIC renderer.\n" +
"Press 2 to enable the CORRECT Z ORDER renderer.\n" +
"Press 3 to enable the INTERSECTING OBJECTS renderer.";
text.x = 10;
text.y = 10;
text.width = 300;
this.addChild (text) ;

}

protected function onKeyUp (event:KeyboardEvent) :void

{

switch (event.keyCode)
{
case 49:
view.renderer = Renderer.BASIC;
break;
case 50:
view.renderer = Renderer.CORRECT Z ORDER;
break;
case 51:
view.renderer = Renderer.INTERSECTING OBJECTS;
break;

}

protected override function onEnterFrame (event:Event) :void
super.onkEnterFrame (event) ;
for (var i:int = 0; 1 < 10; ++1)
var newPosition:Vector3D = new Vector3D() ;
newPosition = spheres[i] .position.add(directions[i]) ;

for each (var property:String in ["x", "y", "z"])

if (newPosition [property] < -BOXSIZE/2)
newPosition [property] = -BOXSIZE/2;
directions[i] [property] *= -1;

[114]

Chapter 4

if (newPosition [property] > BOXSIZE/2)

{

newPosition [property] = BOXSIZE/2;
directions[i] [property] *= -1;

spheres[i] .position = newPosition;

}

A scene made up of ten spheres is still quite simple by most standards, but note
what happens when you switch to the CORRECT_Z_ORDER or INTERSECTING OBJECTS
renderers from the default BAs1c renderer. Chances are, the application went from
being smooth and fluid to quite jerky. And that's if it doesn't just throw an error

about the script time out.

B Adobe Flash Player 10

An dctionScript error has occurned:

x|

at awap3d.core.render: QuadrantR enderer/getParent()
at awaydd.core render:QuadrantR enderer/getParent])
at away3d.core.render:: QuadrantR enderer/getParent()
at awap3d.core.render: QuadrantR enderer/getParent()
at away3d.core.render:: QuadrantR enderer/get()

at away3d.core. filker:QuadrantRiddleFilterfilter()

at away3d. core.render: QuadrantB endererrender(]

at away3d.core render::AbstractB enderS eszionrender()
at away3d.core.render::AbstractB enderS ession/render()
at awaydd.containers: View3D frender)

Dizmiss Al

Errar: Error $#1502: & script has executed for longer than the default timeout period of 15 seconds.

The RenderersPerformanceDemo application demonstrates the performance
limitations of the more advanced renderers. For all but the most simple of scenes
it is generally best to try and correct the sorting order of 3D objects manually in order

to maintain a reasonable frame rate.

[115]

Z-Sorting

Summary

This chapter gave an overview of the painter's algorithm, which is used by Away3D
to draw a scene, starting with those 3D objects that are furthest from the camera and
working its way forward. We then saw the method in which Away3D determines the
distance of a 3D object from the camera, which then defines the sorting order of the
3D objects. We also saw some of the limitations of the algorithms used to calculate
these distances.

While the default algorithms implemented by Away3D will correctly sort the

3D objects within a scene most of the time, these limitations can lead to situations
where a scene is not rendered correctly. One such situation was demonstrated, and
a number of solutions were then provided that allow us to control the way in which
Away3D sorts the scene including:

e The pushback and pushfront properties
e The screenzoffset property
e The ownCanvas property
In addition, we looked at the additional renderers provided by Away3D, which

can be used to solve some sorting issues, thanks to their use of a more advanced
sorting algorithm.

In the next chapter, we will explore the various materials that can be applied
to 3D objects.

[116]

Materials

We have seen how 3D objects can be created and displayed within the scene, and
until now they have been displayed using the default material, WireColorMaterial,
which displays as a solid color with black outline. While this does allow us to view
our 3D objects, it is a little boring. Thankfully, Away3D includes over a dozen
material types that can be used to display 3D objects with a huge variety of effects,
with some of the materials using the Pixel Bender technology new to Flash Player 10
to create a level of detail that has not previously been seen in Flash applications.

This chapter covers the following:

¢ Managing resources by embedding them, or loading them from external files
e Defining colors

e Pixel Bender

e The various shading techniques used by Away3D materials

o The different materials that can be created in Away3D

¢ [lluminating materials with lights

The difference between textures and
materials

Throughout this chapter, a number of references will be made to materials and
textures. A texture is simply an image, like you would create in an image editing
application like Photoshop or view in a web page. Textures are then used by
materials, which in Away3D are classes that can be applied to the surface of

a 3D object.

Materials

Resource management

Quite a number of the materials included in Away3D rely on textures that exist
in external image like a PNG, JPG, or GIF file. There are two ways of dealing with
external files: embedding them or accessing them at runtime.

ActionScript includes the Embed keyword, which can be used to embed external
files directly inside a compiled SWF file. There are a number of benefits to
embedded resources:

e The Flash application can be distributed as a single file

e There is no wait when accessing the resources at runtime

e The security issues associated with accessing remote resources are avoided

e There is no additional network traffic once the SWF is downloaded

e The SWF file can be run offline

e The embedded files can have additional compression applied

The downside to embedding resources is that the size of the final SWF is increased,
resulting in a longer initial download time.

Alternatively, the external files can be saved separately and accessed at runtime,
which has the following advantages:
e The SWF file is smaller, resulting in shorter initial download times

e Resources are only downloaded when they are needed, and cached for
future access

e Resources can be updated or modified without recompiling the SWF file
There are several downsides to accessing resources at runtime:
e Permissions on the server hosting the resources may need to be configured
before the external files can be accessed

e Distribution of the final Flash application is more difficult due to the
increased number of individual files

e There will be a delay when the application is run as the remote resources
are downloaded

Away3D supports the use of both embedded and external resources, and both
methods will be demonstrated below.

[118]

Chapter 5

Embedding the resources is usually the best option when managing
resources. It prevents a number of possible errors due to unreliable
networks and security restrictions, and produces a SWF file that is much
simpler to distribute and publish.

N However, for applications where it is not possible to know what resources
will be required beforehand, like a 3D image gallery, loading external
resources is the only option. You may also want to load external resources
for applications where there is a large volume of data that does not need
to be downloaded immediately, like a large game with levels that the
player won't necessarily see in a single sitting.

Defining colors in Away3D

The appearance of a number of materials can be modified by supplying a color.

A good example is the WireColorMaterial material (the same one that is applied
to a 3D object when no material is specified), the fill and outline colors of which can
be defined via the color and wirecolor init object parameters.

Colors can be defined in Away3D in a number of different formats. Common to all
the formats is the idea that a color is made up of red, green, and blue component. For
example, the color purple is made up of red and blue, while yellow is made up of red
and green.

By integer

Colors can be defined as an integer. These int values are usually defined in their
hexadecimal form, which looks like 0x12cD56. The characters that make up the int
can be digits between 0 and 9, and characters between A and F. You can think of

the characters A through to F as representing the numbers 10 to 15, allowing each
character to represent 16 different values. For each color component, 00 is the lowest
value, and FF is the highest. The first two characters define the red components of
the color, the next two define the green component, and the final two define the
blue component.

It is sometimes necessary to define the transparency of a color. This is done by
adding two additional characters to the beginning of the hexadecimal notation, such
as 0xFF12CD56. In this form, the two leading characters define the transparency,

or alpha, of the color. The last six characters represent the red, green, and blue
components. Smaller alpha values make a color more transparent, while higher
alpha values make a color more opaque.

[119]

Materials

You can see an example of a color being defined as an int in the
applyWireframeMaterial () function from the MaterialsDemo class that is
discussed later in the chapter.

By string

The same hexadecimal format used by integers can also be represented as a String.
The only difference is that the prefix Ox is left off. An example would be "12¢D56", or
"FF12CD56". The MaterialsDemo applyColorMaterial () function demonstrates the
use of this color format.

Away3D also recognizes a number of colors by name. These are listed in the
following table. The MaterialsDemo applyWireColorMaterial () function
demonstrates the use of colors defined by name.

random
lightsteelblue

lightskyblue

skyblue lightblue azure

lightcyan paleturquoise

powderblue

aquamarine

chartreuse lawngreen greenyellow
palegreen lightgreen

darkkhaki gold
yellow khaki palegoldenrod blanchedalmond
moccasin wheat navajowhite

lightsalmon

burlywood

tan

lightpink

[120]

Chapter 5

pink

violet plum thistle lavender
ghostwhite aliceblue mintcream honeydew
lightgoldenrodyellow lemonchiffon cornsilk lightyellow
ivory floralwhite linen oldlace
antiquewhite bisque peachpulff papayawhip
beige seashell lavenderblush mistyrose
snow white whitesmoke gainsboro

lightgrey silver darkgrey

transparent

Pixel Bender

Pixel Bender is a technology, new to Flash Player 10, that implements generalized
graphics processing in the Pixel Bender language. The programs written using Pixel
Bender are known as kernels or shaders. Shaders have the advantage of being able
to be run across multiple CPUs and CPU cores, unlike the graphics processing done
via the Flash graphics API. This gives shaders the potential to be much faster.

a1

~ The term shader and kernel can be used interchangeably with
respect to Pixel Bender.

One of the advantages of using Away3D version 3.x over version 2.x is the ability to
use Pixel Bender shaders. The implementation of these shaders is largely hidden by
the material classes that utilize them, meaning that they can be used much like the
regular material classes, while at the same time offering a much higher level of detail.

A common misconception is that Flash Player 10 uses the Graphics Processing Unit
(GPU), which is common to most video chipsets these days, to execute shaders. This
is incorrect. Unlike some other Adobe products that also make use of Pixel Bender
shaders, Flash Player 10 does not utilize the GPU when executing shaders.

a1

~ Adobe has indicated that GPU rendering support for Pixel
Bender may be included in future releases of Flash Player.

[121]

Materials

Lights and materials

Lights and materials are two sides of the same coin in Away3D. The effect of a light
can only be seen on a material, and materials that can be illuminated will generally
show up completely black without a light source.

Away3D includes three classes, all from the away3d.1ights package, with each one
representing a different type of light:

e DPoint lights, represented by the PointLight3D class, emit light in all
directions from a point in space. The intensity of the point light is calculated
using the inverse square law of attenuation (light intensity =1 / distance?).

e Directional lights, represented by the DirectionalLight3D class, emit light
along a vector, like a flash light. Unlike the point light, the intensity of the
directional light does not diminish with distance. The intensity does decrease
as the angle between the vector along which the directional light is shining
and the surface it is shining on increases.

e Ambient lights, represented by the AmbientLight3D class, shine on all
surfaces equally. Ambient lights can be used to add a minimum amount
of light to those materials that implement them.

Only a subset of the materials available in Away3D can be illuminated, and those
materials may only support a subset of the different types of lights. The following
table lists those materials that can be lit, which types of lights they support, and
whether the material can be illuminated by multiple light sources. The material
classes themselves will be covered in more detail later on in this chapter.

Material Ambient Directional Point Multiple
Lights
Dot3BitmapMaterial * * *
Dot3BitmapMaterialF10 *
PhongBitmapMaterial * * *
PhongColorMaterial * *
PhongMovieMaterial * * *
PhongPBMaterial *
PhongMultipassMaterial * * *
ShadingColorMaterial * * *
WhiteShadingBitmapMaterial * * *

[122]

Chapter 5

There does not appear to be any overall design when determining
which types of lights are supported by which materials. The phong
shading materials are a good example. PhongMultipassMaterial
supports both point and directional lights, while PhongPBMaterial
~ only supports point lights. Neither supports the ambient light type,
Q unlike the PhongBitmapMaterial, PhongColorMaterial, and
PhongMovieMaterial classes.

The choice of what type of light source to use in your Away3D
applications will usually be determined by your choice of material, and
not the other way around.

Shading techniques

Away3D materials use a number of shading techniques, sometimes in combination,
to achieve their end result. These techniques can be used to apply a texture to the
surface of a 3D object, illuminate a 3D object using an external light source, display
a reflection of the surrounding environment, or simulate the appearance of a
bumpy surface.

Texture mapping

Texture mapping is used to apply an image, usually from a PNG, JPG, or GIF file, to
the surface of a 3D object. It is used on its own to display a single texture, or it can be
used in conjunction with the other shading techniques.

The following image shows a sphere that uses texture mapping to display a single
texture representing the Earth:

[123]

Materials

Normal mapping

Normal mapping is a technique that is used to add the appearance of depth to a 3D
object. This is done by using the information stored in an image called a normal map
to calculate how each part of the material should be shaded. This shading gives the
impression of a bumpy surface.

Normal mapping has the benefit of adding depth detail without using additional
polygons. A normal mapped low-polygon 3D object will generally be rendered faster
than a high-polygon 3D object with a standard material, while maintaining much of
the visual quality of the high-polygon 3D object.

o A useful utility for creating normal maps can be found at
~ http://www.tartiflop.com/disp2norm/. This tool will
Q create normal maps from a grayscale displacement map that
can be applied to flat or spherical 3D objects.

The following image is an example of a normal map that can be applied to a sphere:

This effect is shown in the following image, where you can see how the sphere
appears to have a rough surface. From the angle in the screenshot, this roughness
is especially apparent over the African continent.

[124]

Chapter 5

Environment mapping

Environment mapping is used to draw a 3D object's surroundings as a

reflection. Reflecting the true surroundings of a 3D object on its surface is far too
computationally expensive, but the effect can be approximated using a single texture,
or a collection of textures that form a cube that appears to surround the 3D object.

Environment mapping is useful for creating the appearance of shiny 3D objects,
like those with a polished or metallic surface. In the following image, the first two
3D objects have had a material applied that implements environment mapping
(reflecting a marble texture). The torus on the left has applied an environment map
over a base texture map, while the one in the middle has applied the environment
map over a solid color. As a comparison the torus on the right has had a material
applied to it that uses only texture mapping.

The effect that is produced by environment mapping can be difficult to appreciate
in a static screenshot, but it is immediately apparent as the 3D object moves relative
to the camera.

[125]

Materials

Flat shading

Flat shading is used to illuminate each polygon against a light source. It is very
quick to calculate, but since each triangle face is shaded as a whole it does tend
to highlight the edges of a low-polygon 3D object.

The following sphere has been illuminated using flat shading. As you can see it is
easy to discern each of the triangle faces that make up the sphere.

Phong shading

Phong shading will calculate the illumination of each pixel on the surface of a
3D object against a light source. This eliminates the sharp edges that can be produced
by flat shading, but does so with a performance cost.

The following sphere has been illuminated using phong shading. Because each pixel
is lit independently of the triangle faces, the end result is much smoother than the
flat shading technique discussed previously.

[126]

Chapter 5

Applying materials
To demonstrate the basic materials available in Away3D, we will create a new demo
called MaterialsDemo.

package

{

Some primitives show off a material better than others. To accommodate this, we
will apply the various materials to the sphere, torus, cube, and plane primitive 3D
objects in this demo. All primitives extend the Mesh class, which makes it the logical
choice for the type of the variable that will reference instances of all four primitives.

import away3d.core.base.Mesh;

The cast class provides a number of handy functions that deal with the casting of
objects between types.

import away3d.core.utils.Cast;

As we saw previously, those materials that can be illuminated support point or
directional light sources (and sometimes both). To show off materials that can be
illuminated, one of these types of lights will be added to the scene.

import away3d.lights.DirectionalLight3D;
import away3d.lights.PointLight3D;

In order to load textures from external image files, we need to import the
TextureLoadQueue and TextureLoader classes.

import away3d.loaders.utils.TextureLoadQueue;
import away3d.loaders.utils.TextureLoader;

The various material classes demonstrated by the MaterialsDemo class are imported
from the away3d.materials package.

import away3d.materials.AnimatedBitmapMaterial;
import away3d.materials.BitmapFileMaterial;
import away3d.materials.BitmapMaterial;

import away3d.materials.ColorMaterial;

import away3d.materials.CubicEnvMapPBMaterial;
import away3d.materials.DepthBitmapMaterial;
import away3d.materials.Dot3BitmapMaterial;
import away3d.materials.Dot3BitmapMaterialF10;
import away3d.materials.EnviroBitmapMaterial;
import away3d.materials.EnviroColorMaterial;
import away3d.materials.FresnelPBMaterial;
import away3d.materials.MovieMaterial;

[127]

Materials

import away3d.materials.PhongBitmapMaterial;

import away3d.materials.PhongColorMaterial;

import away3d.materials.PhongMovieMaterial;

import away3d.materials.PhongMultiPassMaterial;
import away3d.materials.PhongPBMaterial;

import away3d.materials.ShadingColorMaterial;
import away3d.materials.TransformBitmapMaterial;
import away3d.materials.WhiteShadingBitmapMaterial;
import away3d.materials.WireColorMaterial;

import away3d.materials.WireframeMaterial;

These materials will all be applied to a number of primitive types, which are all
imported from the away3d.primitives package.

import away3d.primitives.Cube;

import away3d.primitives.Plane;
import away3d.primitives.Sphere;
import away3d.primitives.Torus;

The cubFaces class defines a number of constants that identify each of the six sides
of a cube.

import away3d.primitives.utils.CubeFaces;

The following Flash classes are used when loading textures from external image
files, to handle events, to display a textfield on the screen, and to define a position or
vector within the scene.

import flash.geom.Vector3D;

import flash.net.URLRequest;
import flash.display.BitmapData;
import flash.events.Event;

import flash.events.KeyboardEvent;
import flash.text.TextField;

The MaterialsDemo class extends the Away3DTemplate class that was presented in
Chapter 1, Building Your First Away3D Application.

public class MaterialsDemo extends Away3DTemplate

{

One of the ways to manage resources that was discussed in the Resource management
section was to embed them. Here, we see how an external JPG image file, referenced
by the source parameter, has been embedded using the Embed keyword. Embedding
an image file in this way means that instantiating the EarthDiffuse class will

result in a Bitmap object populated with the image data contained in the

earth diffuse.jpg file

[128]

Chapter 5

[Embed (source
protected var

= "earth diffuse.jpg")]
EarthDiffuse:Class;

A number of additional images have been embedded in the same way.

[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var
[Embed (source
protected var

= "earth normal.jpg")]
EarthNormal:Class;

= "earth specular.jpg")]
EarthSpecular:Class;

= "checkerboard.jpg")]
Checkerboard:Class;

= "bricks.jpg")]
Bricks:Class;

= "marble.jpg")]
Marble:Class;

= "water.jpg")]
Water:Class;

= "waternormal.jpg")]
WaterNormal:Class;

= "spheremap.gif")]
SphereMap:Class;

= "gkyleft.jpg")]
Skyleft:Class;

= "skyfront.jpg")]
Skyfront:Class;

= "gkyright.jpg")]
Skyright:Class;

= "skyback.jpg")]
Skyback:Class;

= "gkyup.jpg")]
Skyup:Class;

= "skydown.jpg")]
Skydown:Class;

Here we are embedding three SWF files. These are embedded just like the

preceding images.

[Embed (source

= "Butterfly.swf")]

protected var Butterfly:Class;
[Embed (source =
private var InteractiveTexture:Class;
[Embed (source =
private var Bear:Class;

"InteractiveTexture.swf")]

"Bear.swf")]

[129]

Materials

A TextField object is used to display the name of the current material on the screen.

protected var materialText:TextField;

The currentPrimitive property is used to reference the primitive to which we will
apply the various materials.

protected var currentPrimitive:Mesh;

The directionalLight and pointLight properties each reference a light that is
added to the scene to illuminate certain materials.

protected var directionallLight:DirectionalLight3D;
protected var pointLight:PointLight3D;

The bounce property is set to true when we want the sphere to bounce along
the Z-axis. This bouncing motion will be used to show off the effect of the
DepthBitmapMaterial class.

protected var bounce:Boolean;

The frameCount property maintains a count of the frames that have been rendered
while bounce property is set to true.

protected var frameCount:int;

The constructor calls the Away3DTemplate constructor, which will initialize the
Away3D engine.

public function MaterialsDemo ()

{

super () ;

}

The removePrimitive () function removes the current primitive 3D object from the
scene, in preparation for a new primitive to be created.

protected function removePrimitive () :void

{

if (currentPrimitive != null)

{

scene.removeChild (currentPrimitive) ;
currentPrimitive = null;

[130]

Chapter 5

The initsphere () function first removes the existing primitive from the scene by
calling the removePrimitive () function, and then creates a new sphere primitive
and adds it to the scene. Optionally, it can set the bounce property to true, which
indicates that the primitive should bounce along the Z-axis.

protected function initSphere (bounce:Boolean = false) :void
removePrimitive () ;
currentPrimitive = new Sphere() ;
scene.addChild (currentPrimitive) ;
this.bounce = bounce;

}

The initTorus (), initCube (), and initPlane () functions all work like the
initSphere () function to add a specific type of primitive to the scene. These
functions all set the bounce property to false, as none of the materials that will be
applied to these primitives gain anything by having the primitive bounce within
the scene.

protected function initTorus () :void
removePrimitive () ;
currentPrimitive = new Torus() ;
scene.addChild (currentPrimitive) ;
this.bounce = false;

protected function initCube () :void
{
removePrimitive () ;
currentPrimitive = new Cube (
{
width: 200,
height: 200,
depth: 200
}
)i
scene.addChild (currentPrimitive) ;
this.bounce = false;

}

protected function initPlane () :void

{

removePrimitive () ;

[131]

Materials

currentPrimitive = new Plane (
bothsides: true,
width: 200,
height: 200,
yUp: false
)i
scene.addChild (currentPrimitive) ;
this.bounce = false;

}

The removeLights () function will remove any lights that have been added to the
scene in preparation for a new light to be created.

protected function removeLights () :void

if (directionallLight != null)
scene.removelLight (directionalLight) ;
directionallLight = null;

if (pointLight != null)

{
scene.removelLight (pointLight) ;
pointLight = null;

}

The initPointLight () and initDirectionalLight () functions each remove any
existing lights in the scene by calling the removeLights () function, and then add
their specific type of light to the scene.

protected function initPointLight () :void

{

removeLights () ;

pointLight = new PointLight3D(
{
x: -300,
y: -300,
radius: 1000

[132]

Chapter 5

)
scene.addLight (pointLight) ;

}

protected function initDirectionalLight () :void

{

removeLights () ;

directionallLight = new DirectionalLight3D(

{

x: 300,
y: 300,

The direction that the light is pointing is set to (0, 0, 0) by default, which effectively
means the light is not pointing anywhere. If you have a directional light that is not
being reflected off the surface of a lit material, leaving the direction property to this
default value may be the cause. Here we override the default to make the light point
back to the origin.

direction: new Vector3D(-1, -1, 0)
}
)
scene.addLight (directionalLight) ;

}

The initScene () function has been overridden to call the
applyWireColorMaterial () function, which will display a sphere with the
WireColorMaterial material applied to it. We also set the position of the
camera back to the origin.

protected override function initScene() :void

{

super.initScene() ;
this.camera.z = 0;
applyWireColorMaterial () ;

}

The initUI () function adds a textfield to the stage. This textfield will be used
to display the name of the currently applied material.

[133]

Materials

The TextField object is added as a child of the main Sprite class (from
M which the Away3DTemplate class extends), and has no direct association
Q with the Away3D engine. As such the x and y coordinates shown below
relate to a 2D position on the screen, and not a 3D position within the
Away3D scene.

protected override function initUI () :void
{
materialText = new TextField() ;
materialText.x = 10;
materialText.y = 10;
materialText.width = 300;
this.addChild (materialText) ;

}

The initListeners () function has been overridden to register the onkeyUp ()
function to be called when a key on the keyboard has been released.

protected override function initListeners() :void

{

super.initListeners () ;
stage.addEventListener (KeyboardEvent .KEY UP, onKeyUp) ;

}
The onEnterFrame () function is overridden to animate the current primitive.

protected override function onEnterFrame (event:Event) :void

{

super.onEnterFrame (event) ;

If bounce property is true the current primitive will bounce along the Z-axis
between 400 and 600 units from the origin. This is used to show off the effect
produced by the DepthBitmapMaterial class.

if (bounce)
++frameCount ;
currentPrimitive.z =
500 + Math.sin(frameCount / 10) * 100;

[134]

Chapter 5

If bounce is false, the current primitive will be fixed at a position of 500 units along
the Z-axis.

else
frameCount = 0;
currentPrimitive.z = 500;

}
The current primitive will also be slowly rotated around the X and Y axes.

currentPrimitive.rotationX += 1;

currentPrimitive.rotationY += 1;

}

The onkeyUp () function uses a switch statement to call a function in response to
certain keyboard keys being released. The comment next to each case statement
shows the key that the keyCode property relates to.

protected function onKeyUp (event:KeyboardEvent) :void

{

switch (event.keyCode)
{
case 49: // 1
applyWireColorMaterial () ;
break;
case 50: // 2
applyWireframeMaterial () ;

break;

case 51: // 3
applyColorMaterial () ;
break;

case 52: // 4
applyBitmapMaterial () ;
break;

case 53: // 5
applyDepthBitmapMaterial () ;

break;

case 54: // 6
applyMovieMaterial () ;
break;

case 55: // 7
applyInteractiveMovieMaterial () ;
break;

case 56: // 8

[135]

Materials

applyAnimatedBitmapMaterial () ;
break;

case 57: // 9
applyDot3BitmapMaterialF10 () ;
break;

case 48: // O
applyDot3BitmapMaterial () ;
break;

case 81: // Q
applyEnviroBitmapMaterial () ;
break;

case 87: // W
applyEnviroColorMaterial () ;
break;

case 69: // E
applyFresnelPBMaterial () ;
break;

case 82: // R
applyPhongBitmapMaterial () ;
break;

case 84: // T
applyPhongColorMaterial () ;
break;

case 89: // Y
applyPhongMovieMaterial () ;
break;

case 85: // U
applyPhongPBMaterial () ;
break;

case 73: // 1
applyPhongMultiPassMaterial () ;
break;

case 79: // O
applyShadingColorMaterial () ;
break;

case 80: // P
applyWhiteShadingBitmapMaterial () ;
break;

case 65: // A
applyTransformBitmapMaterial () ;
break;

case 83: // S

[136]

Chapter 5

applyCubicEnvMapPBMaterial () ;
break;

case 68: // D
applyBitmapFileMaterial () ;
break;

case 70: // F
applyExternalDot3BitmapMaterial () ;
break;

}
}

The remainder of the MaterialsDemo class is made up of the functions called by

the onkKeyUp () function that create a primitive 3D object, apply a material to it, and
create a light if one is needed. The materials that are applied by these functions, the
function itself, and a table showing the parameters that the materials accept are listed
in the coming sections.

Unlike the classes used to create the primitive 3D objects in Chapter 2,
\ Creating and Displaying Primitives, which usually accepted a single init
~ object as the constructor parameter, the Away3D material classes have
Q constructors that accept a combination of regular parameters and an init
object. To distinguish between the two, the regular parameters will be
shown in bold in the following tables.

Basic materials

The basic materials don't rely on a texture, and so can be used without having to load
or embed any external resources. This makes them easy to use, and they are great for
quickly prototyping an application.

WireColorMaterial

For most of the previous demos, we have not specifically applied any particular
material to the 3D objects. When no material is specified, Away3D will apply the
WireColorMaterial material, which shades the 3D object with a solid color (this
color is randomly selected at runtime unless a specific color is supplied) and draws
the outline of the 3D objects triangle faces.

Here we will specifically create a new instance of the wireColorMaterial class and
apply it to the 3D object. The color of the material has been specified by a string
representing the color's name.

protected function applyWireColorMaterial () :void

{

[137]

Materials

The initSphere () function is called to add a sphere primitive to the scene.

initSphere() ;

The name of the material is assigned to the TextField text property, which will
display the material name on the screen.

materialText.text = "WireColorMaterial";

The material itself is then created and assigned to the local newMaterial variable.
Here we have defined the solid color to be dodgerblue (using a String to define the
color), while the color of the wireframe will be white (defined by the int 0xFFFFFF)
with a width of two pixels.

var newMaterial:WireColorMaterial =
new WireColorMaterial ("dodgerblue",

{

wirecolor: OxXFFFFFF,
width: 2

!
)i

The new material is then assigned to the primitive via the Mesh material property.

currentPrimitive.material = newMaterial;

The following table lists the parameters accepted by the wireColorMaterial
constructor. Those in bold are passed directly to the constructor, while the remaining
parameters are passed in via an init object.

[138]

Chapter 5

The WwireColorMaterial class extends the WireframeMaterial class, which means
the init object parameters listed for the WireframeMaterial class also apply to the
WireColorMaterial class.

Parameter Data Type Default Value Description

color int / String null / random Defines the solid shading color.

alpha Number 1 Defines the transparency of the material.

wirecolor int / String 0x000000 Defines the color of the wireframe lines.
WireframeMaterial

The wireframeMaterial only draws the outline of the triangle faces that
make up the 3D object. In this example, the wireframe color has been specified
using an int. This int value is equivalent to the dodgerblue color used in the
applyWireColorMaterial () function.

protected function applyWireframeMaterial () :void
initSphere() ;
materialText.text = "WireframeMaterial";
var newMaterial:WireframeMaterial =
new WireframeMaterial (0x1E90FF,

{

}
)i

currentPrimitive.material = newMaterial;

width: 2

[139]

Materials

Parameter Data Type Default Value Description
wireColor int / String null / random Defines the wireframe color.
wireAlpha Number 1 Defines the transparency of the
material.
thickness Number 1 Defines the width of the wireframe
lines.
ColorMaterial

The colorMaterial applies a solid color to the surface of a 3D object. This
example shows the color being supplied as the string version of the dodgerblue
hexadecimal representation.

protected function applyColorMaterial () :void
initSphere() ;
materialText.text = "ColorMaterial";
var newMaterial:ColorMaterial =
new ColorMaterial ("1ESOFF") ;

currentPrimitive.material = newMaterial;

[140]

Chapter 5

The CcolorMaterial class extends the WireColorMaterial class, which means
the init object parameters listed for the WwireColorMaterial class also apply to the
ColorMaterial class.

If the debug init object parameter is set to true, an instance of the colorMaterial
class will be drawn just like the wireColorMaterial class.

Parameter Data Type Default Value Description
color int/ String null / random Defines the solid shading color.
debug Boolean false When set to true, the material will

be drawn as a WireColorMaterial.

Bitmap materials

Bitmap materials display a texture on the surface of a 3D object. These textures are
usually defined in external PNG, JPG, or GIF files created with an image editing
application like Photoshop.

BitmapMaterial

The BitmapMaterial class applies a bitmap texture to the surface of a 3D object.
In this example, the bitmap is created from the embedded image contained in the
EarthDiffuse class.

protected function applyBitmapMaterial () :void
{

initSphere() ;

materialText.text = "BitmapMaterial";

Here we use the static bitmap () function from the cast class to cast the EarthDiffuse
class into a BitmapData object as required by the BitmapMaterial constructor.

var newMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (EarthDiffuse)) ;

currentPrimitive.material = newMaterial;

[141]

Materials

The Cast class offers a number of convenient functions to cast between
types, but using these functions is not a requirement. A new instance
of the BitmapMaterial class could also have been created using the

following code:

var newMaterial:BitmapMaterial

= new

BitmapMaterial (new EarthDiffuse () .bitmapData) ;

Parameter

Data Type Default Value

Description

bitmap
wireColor

smooth

debug

repeat

blendMode

BitmapData
int / String 0x0000FF

Boolean false

Boolean false

Boolean false

String BlendMode.
NORMAL

The bitmapData object to be used
as the material's texture.

Defines the color used to outline the
triangles when debug is set to true.

Determines if texture bitmap is
smoothed (bilinearly filtered) when
drawn to screen.

If set to true, textured triangles
are drawn with white outlines.
Precision correction triangles are
drawn with blue outlines.

Determines if texture bitmap will
tile in uv-space.

Defines a blendMode value for the
texture bitmap. The BlendMode
class, from the flash.display
package, defines the blend modes
that can be used.

[142]

Chapter 5

Parameter Data Type Default Value Description

colorTransform ColorTransform null Defines a ColorTransform for the
texture bitmap.

showNormals Boolean false Displays the normals per face in
pink lines.

color int / String OxFFFFFF Defines a color to be applied over

the base bitmap texture.

TransformBitmapMaterial

A bitmap material is usually applied to the surface of a 3D object based on its
UV coordinates. The TransformBitmapMaterial material has a number of
properties that allow its appearance to be scaled, offset, and rotated within
the UV coordinates space.

Here we have used the rotation init object parameter to rotate the material
by 45 degrees. This rotation shows up quite clearly on the cube, thanks to the
checkerboard texture.

When transforming the material you will most likely want to set the repeat init
object parameter to true. This ensures that the texture is repeated across the surface
of the 3D object. If repeat is set to false (which it is, by default), the texture will
be transformed and applied once, with the edge of the transformed texture then
stretched across any remaining surface area. The screenshot on the left shows the
result, if repeat is set to true. The screenshot on the right shows the result if
repeat is set to false.

[N

protected function applyTransformBitmapMaterial () :void

initCube () ;
materialText.text = "TransformBitmapMaterial";

[143]

Materials

var newMaterial:TransformBitmapMaterial =
new TransformBitmapMaterial (Cast.bitmap (Checkerboard),

{

repeat: true,
rotation: 45

)i

currentPrimitive.material = newMaterial;

}

The TransformBitmapMaterial class extends the BitmapMaterial class.
This means that in addition to those parameters in the following list, the init
object parameters listed for the BitmapMaterial class are also valid for the
TransformBitmapMaterial class.

Parameter Data Type Default Description
Value

bitmap BitmapData The bitmapData object to be used as
the material's texture.

transform Matrix null Transforms the texture in uv-space.

scaleX Number 1 Scales the x coordinates of the texture
in uv-space.

scaleY Number 1 Scales the y coordinates of the texture
in uv-space.

offsetX Number 0 Offsets the x coordinates of the
texture in uv-space.

offsetY Number 0 Offsets the y coordinates of the
texture in uv-space.

rotation Number 0 Rotates the texture in uv-space.

projectionVector Number3D null Projects the texture in object space,

ignoring the uv coordinates of the
vertex objects. Texture renders
normally when set to null.

throughProjection =~ Boolean true Determines whether a projected
texture is visble on the faces pointing
away from the projection.

globalProjection Boolean false Determines whether a projected
texture uses offsetX, offsetY, and
projectionVector values relative to
scene coordinates.

[144]

Chapter 5

Animated materials

A number of materials can be used to display animations on the surface of a 3D
object. These animations are usually movies that have been encoded into a SWF
file. You can also display an interactive SWF file, like a form, on the surface of

a 3D object.

MovieMaterial

The MovieMaterial displays the output of a Sprite object, which can be animated.
The sprite usually originates from another SWF file, which in this case we have
embedded and referenced via the Bear class. A new instance of the Bear class

is then passed to the MovieMaterial constructor.

protected function applyMovieMaterial () :void
{
initCube () ;
materialText.text = "MovieMaterial";
var newMaterial :MovieMaterial =
new MovieMaterial (new Bear()) ;
currentPrimitive.material = newMaterial;

[145]

Materials

The MovieMaterial class extends the TransformBitmapMaterial class. This means
that in addition to those parameters in the following list, the init object parameters
listed for the TransformBitmapMaterial are also valid for the MovieMaterial.

Parameter Data Type Default Value Description

movie Sprite The sprite object to be used as the
material's texture.

transparent Boolean true Defines the transparent property of the
texture bitmap created from the movie.

autoUpdate Boolean true Indicates whether the texture bitmap is
updated on every frame.

interactive Boolean false Indicates whether the material will pass
mouse interaction through to the movie.

lockW int movie.width A number to lock the width of the draw
region other than the source movieclip
source.

lockH int movie.height A number to lock the height of the draw
region other than the source movieclip
source.

AnimatedBitmapMaterial

The AnimatedBitmapMaterial class displays the frames from a MovieClip object.
In order to increase performance, it will first render each frame of the supplied
MovieClip into a bitmap. These bitmaps are stored in a cache, which increases
playback performance at the cost of using additional memory.

Because of the memory overhead resulting from this cache, the
AnimatedBitmapMaterial cannot be used to display movie clips longer than
two seconds. If you pass a movie clip longer than two seconds an exception
will be thrown.

The MovieClip object, passed to the AnimatedBitmapMaterial constructor, usually
originates from another SWF file. This source SWF file needs to be implemented

in the ActionScript Virtual Machine 2 (AVM2) format, which is the format used by
Flash Player 9 and above. This is an important point, because a large number of
video conversion tools will output AVM1 SWFE files.

MovieMaterial class instead.

[JlQ If you need to display a SWF movie in AVM1 format, use]

[146]

Chapter 5

If you try to use an AVM1 SWF file with the AnimatedBitmapMaterial class, an
exception similar to the following will be thrown:

TypeError: Error #1034: Type Coercion failed: cannot convert flash.display::
AVM1Movie@51e8e51 to flash.display.MovieClip.

FFmapeg is a free, cross-platform tool that can be used to convert video
files into AVM2 SWE files. It can be downloaded from http://ffmpeg.
M org/, and precompiled Windows binaries can be downloaded from
http://sourceforge.net/projects/mplayer-win32/files/
FFmpeg/. The following command will convert a WMV video into a two
second AVM2 SWF file with a resolution of 320 x 240 without any audio.

ffmpeg -i Butterfly.wmv -t 2 -s 320x240 -an -f avim2 Butterfly. SWF

protected function applyAnimatedBitmapMaterial () :void
{
initCube () ;
materialText.text = "AnimatedBitmapMaterial";
var newMaterial:AnimatedBitmapMaterial =
new AnimatedBitmapMaterial (new Butterfly()) ;
currentPrimitive.material = newMaterial;

}

The aAnimatedBitmapMaterial class extends the TransformBitmapMaterial
class. This means that in addition to those parameters in the following list, the init
object parameters listed for the TransformBitmapMaterial are also valid for the
AnimatedBitmapMaterial.

Parameter Data Type Default Value Description

movie MovieClip The movieclip to be bitmap cached for
use in the material.

loop Boolean true Indicates whether the animation will loop.

autoplay Boolean true Indicates whether the animation will start

playing on initialization.

_index int 0 Sets the frame index of the animation.

[147]

Materials

Interactive MovieMaterial

By setting the interactive parameter to true, a MovieMaterial object can pass
mouse events to the Sprite object it is displaying. This allows you to interact with
the material as if it were added directly to the Flash stage while it is wrapped around
a 3D object.

protected function applyInteractiveMovieMaterial () :void

initCube () ;

materialText.text = "MovieMaterial - Interactive";

var newMaterial:MovieMaterial =

new MovieMaterial (new InteractiveTexture(),

interactive: true,
smooth: true

)i

currentPrimitive.material = newMaterial;

Bavay3d allows
youlo select,
delete and wirite
tedas ifihe
leiarea were

directly placed on
the screen.

Simplebutton
ypeiinks and tak

Refer to the previous table for the MovieMaterial class for the list of constructor
parameters.

[148]

Chapter 5

Composite materials

Composite materials combine two or more base materials to achieve their final
appearance. Composite materials are used to display a number of effects like
shading, bump mapping, environment mapping, and lighting.

DepthBitmapMaterial

The DepthBitmapMaterial is similar to the BitmapMaterial in that it applies a
bitmap texture to the surface of a 3D object. In addition, the DepthBitmapMaterial
will shade the surface according to its distance from the camera. This can be used
to apply a fog-like effect.

protected function applyDepthBitmapMaterial () :void

{

The effect produced by the DepthBitmapMaterial class is best demonstrated on a
3D object that is moving relative to the camera. Setting the bounce parameter to true
for the initShpere () function will cause the onEnterFrame () function to bounce
the sphere along the Z-axis.

initSphere (true) ;
materialText.text = "DepthBitmapMaterial";
var newMaterial:DepthBitmapMaterial =
new DepthBitmapMaterial (Cast.bitmap (EarthDiffuse),

{

Here, we define the distances from the camera over which the base bitmap texture
is shaded. When the material is closer to the camera than the minZz parameter, it
takes on the color defined by the minColor parameter. When it is further from

the camera than the maxz parameter, it should take on the color defined by the
maxColor parameter.

[149]

Materials

Al

There is a bug in Away3D 3.6 that causes the DepthBitmapMaterial
class to interpret the maxColor parameter incorrectly. As it stands,
supplying any color other than 0 to the maxColor parameter is required
for the DepthBitmapMaterial object to apply a shade of black to its
underlying bitmap material as it moves further from the camera. Leaving
the maxColor parameter as its default value of 0x000000 (which is the
same as 0) will cause the DepthBitmapMaterial object to completely
ignore the base bitmap texture and only display the black shading.

As you can see in the following example, we supply a black color with
the alpha component defined. This value does not equal zero, and so it is
sufficient to work around this bug.

The actual value assigned to the maxColor parameter is incorrectly
consumed by one of the classes contained in the DepthBitmapMaterial
class. See the topic The problem with init and Init objects in Chapter 6, Models
and Animations, for a more in depth explanation of this process.

The fix for this is quite simple. Change line 122 in the
DepthBitmapMaterial.as file from:

_depthShader = new DepthShader ({minZ: minZ, maxZ:
maxZ, color: maxColor});

to:

_depthShader = new DepthShader ({minZ: minZ, maxZ:
maxz, shadingColor:_maxColor}) ;

Also change line 208 of the DepthShader . as file from:
color = ini.getNumber ("color", 0x000000) ;
to:

color = ini.getNumber ("shadingColor", 0x000000) ;

minZ: 400,
maxz: 500,
maxColor: O0xFF000000

}

)i

currentPrimitive.material = newMaterial;

[150]

Chapter 5

DepthBitmapMaterial is a composite material, meaning it uses two or more

base materials to achieve its final appearance. One of the base materials is the
BitmapMaterial, and the init object supplied to the DepthBitmapMaterial is
also passed along to the BitmapMaterial constructor. This means that in addition
to those parameters in the following list, the init object parameters listed for the
BitmapMaterial are also valid for the DepthBitmapMaterial.

Parameter = Data Type Default Value Description

bitmap BitmapData The bitmapData object to be used as the
material's texture.

minZ Number 500 Coefficient for the minimum Z of the
depth map.

maxZ Number 2000 Coefficient for the maximum Z of the
depth map.

minColor int OxFFFFFF Coefficient for the color shading at minZ.

maxColor int 0x000000 Coefficient for the color shading at maxZ.

EnviroBitmapMaterial

The EnviroBitmapMaterial class achieves the appearance of a reflective surface by
applying a second bitmap as an environment map over a base BitmapMaterial.

protected function applyEnviroBitmapMaterial () :void

{

initTorus () ;

materialText.text = "EnviroBitmapMaterial";

[151]

Materials

var newMaterial:EnviroBitmapMaterial =

new EnviroBitmapMaterial (

)i

currentPrimitive.material

Cast.bitmap (Bricks),
Cast.bitmap (Marble)

= newMaterial;

Like the DepthBitmapMaterial material, EnviroBitmapMaterial is a composite
material that passes the init object to a contained instance of the BitmapMaterial
class. This means that in addition to those parameters in the following list,

the init object parameters listed for the BitmapMaterial are also valid for the

DepthBitmapMaterial.

Parameter Data Type Default Value Description

bitmap BitmapData The BitmapData object to be used as
the material's texture.

enviroMap BitmapData The BitmapData object to be used as
the material's normal map.

mode String linear Setting for possible mapping methods.
This parameter has no effect for the
EnviroBitmapMaterial class.

reflectiveness ~ Number 0.5 Coefficient for the reflectiveness of the

material.

[152]

Chapter 5

EnviroColorMaterial

The EnviroColorMaterial is similar to EnviroBitmapMaterial, with the exception
that it uses a solid color instead of a bitmap as the base texture.

protected function applyEnviroColorMaterial () :void

{

initTorus () ;
materialText.text =
var newMaterial:EnviroColorMaterial =
new EnviroColorMaterial (
"sandybrown",
Cast.bitmap (Marble)

)i
currentPrimitive.material = newMaterial;

"EnviroColorMaterial";

The EnviroColorMaterial class indirectly extends the ColorMaterial class, which
means the init object parameters listed for the colorMaterial class also apply to the

EnviroColorMaterial class.

[153]

Materials

Parameter

Data Type

Default Value

Description

color

enviroMap

mode

reflectiveness

smooth

color

blendMode

int/ String

BitmapData

String

Number

Boolean

int / String

String

random

linear

0.5

false

OxFFFFFF

BlendMode.
NORMAL

A string, hex value, or color name
representing the color of the
material.

The bitmapData object to be used
as the material's environment map.

Setting for possible mapping
methods. This value has no effect for
EnviroColorMaterial.

Coefficient for the reflectiveness of
the environment map.

Determines if the shader bitmap is
smoothed (bilinearly filtered) when
drawn to screen.

Defines a color to be applied over the
base bitmap texture.

Defines a blendMode value for the
shader bitmap.

Light materials

Light materials can be illuminated by an external light source. As was mentioned
earlier, there are three different types of lights that can be applied to these materials:
ambient, point, and directional. Also, remember that these materials will not
necessarily recognize each type of light, or more than one light source. The table
under the Lights and materials section lists which light sources can be applied

to which materials.

WhiteShadingBitmapMaterial

The whiteShadingBitmapMaterial class uses flat shading to apply lighting over
a bitmap texture. As the class name suggests, the lighting is always white in color,
ignoring the color of the source light.

protected function applyWhiteShadingBitmapMaterial () :void

{

initSphere() ;

initPointLight () ;
materialText.text

"WhiteShadingBitmapMaterial";

var newMaterial:WhiteShadingBitmapMaterial =

new WhiteShadingBitmapMaterial (

[154]

Chapter 5

Cast.bitmap (EarthDiffuse)
)

currentPrimitive.material = newMaterial;

The whiteShadingBitmapMaterial class extends the BitmapMaterial class.
This means that in addition to those parameters in the following list, the

init object parameters listed for the BitmapMaterial are also valid for the
WhiteShadingBitmapMaterial.

Parameter Data Type Default Value Description

bitmap BitmapData The bitmapData object to be used
as the material's texture.

shininess Number 20 Coefficient for shininess level.

ShadingColorMaterial

The shadingColorMaterial class uses flat shading to apply lighting over a solid
base color.

protected function applyShadingColorMaterial () :void
{
initSphere() ;
initPointLight () ;
materialText.text = "ShadingColorMaterial™";

[155]

Materials

var newMaterial:ShadingColorMaterial =
new ShadingColorMaterial (
Cast.trycolor ("deepskyblue")
)i

currentPrimitive.material = newMaterial;

The ShadingColorMaterial class extends the ColorMaterial class. This means that
in addition to those parameters in the following list, the init object parameters listed
for the colorMaterial class are also valid for the shadingColorMaterial class.

The color parameter can accept an int or String value. However,
M due to a bug in the ColorMaterial class, only an int value will work
Q correctly. In the previous example, we have manually converted the
color represented by the string deepskyblue into an int with the
trycolor () function from the Cast class.

Parameter Data Type Default Description
Value
color int/String random A string, hex value, or color name
representing the color of the material.
ambient int / String colorvalue Defines a color value for ambient light.
diffuse int / String colorvalue Defines a color value for diffuse light.

[156]

Chapter 5

Parameter Data Type Default Description

Value
specular int / Strint colorvalue Defines a color value for specular light.
alpha Number 1 Defines an alpha value for the material.
cache Boolean false Defines whether the resulting shaded

color of the surface should be cached.

PhongBitmapMaterial

The PhongBitmapMaterial uses phong shading to apply lighting over a
TransformBitmapMaterial base material.

protected function applyPhongBitmapMaterial () :void

{

initSphere() ;
initDirectionalLight () ;
materialText.text = "PhongBitmapMaterial';
var newMaterial :PhongBitmapMaterial =
new PhongBitmapMaterial (Cast.bitmap (EarthDiffuse)) ;
currentPrimitive.material = newMaterial;

[157]

Materials

PhongBitmapMaterial is a composite material that passes the init object to a
contained instance of the TransformBitmapMaterial class. This means that in
addition to those parameters in the following list, the init object parameters listed
for the TransformBitmapMaterial are also valid for the PhongBitmapMaterial.

Parameter Data Type Default Value Description

bitmap BitmapData The bitmapData object to be used as
the material's texture.

shininess Number 20 The exponential dropoff value used for
specular highlights.

specular Number 0.7 Coefficient for specular light level.

PhongColorMaterial

The PhongColorMaterial uses phong shading to apply lighting over a solid color
base material.

protected function applyPhongColorMaterial () :void
{

initSphere () ;

initDirectionalLight () ;

materialText.text = "PhongColorMaterial";

var newMaterial:PhongColorMaterial =

new PhongColorMaterial ("deepskyblue") ;

currentPrimitive.material = newMaterial;

[158]

Chapter 5

Parameter Data Type Default Value Description

color int/ String OxFFFFFF A string, hex value or color name
representing the color of the material.
shininess Number 20 The exponential dropoff value used for
specular highlights.
specular Number 0.7 Coefficient for specular light level.
PhongMovieMaterial

The PhongMovieMaterial uses phong shading to apply lighting over an animated
MovieMaterial base material.

protected function applyPhongMovieMaterial () :void

{

initSphere() ;
initDirectionalLight () ;
materialText.text = "PhongMovieMaterial";
var newMaterial:PhongMovieMaterial =

new PhongMovieMaterial (new Bear()) ;
currentPrimitive.material = newMaterial;

[159]

Materials

PhongMovieMaterial is a composite material that passes the init object to a
contained instance of the MovieMaterial class. This means that in addition to
those parameters in the following list, the init object parameters listed for the
PhongMovieMaterial are also valid for the MovieMaterial.

Parameter Data Type Default Value Description

movie
shininess

specular

Sprite The movie clip to be used as the
material's texture.

Number 20 The exponential dropoff value used for
specular highlights.

Number 0.7 Coefficient for specular light level.

Dot3BitmapMaterial

The Dot3BitmapMaterial uses normal mapping to add depth to a 3D object.

protected function applyDot3BitmapMaterial () :void

{

initSphere() ;
initDirectionalLight () ;
materialText.text = "Dot3BitmapMaterial";
var newMaterial :Dot3BitmapMaterial =
new Dot3BitmapMaterial (
Cast.bitmap (EarthDiffuse),
Cast.bitmap (EarthNormal)
) ;

currentPrimitive.material = newMaterial;

[160]

Chapter 5

Dot3BitmapMaterial is a composite material that passes the init object to a
contained instance of the BitmapMaterial class. This means that in addition

to those parameters in the following list, the init object parameters listed for the
BitmapMaterial are also valid for the Dot3BitmapMaterial.

Parameter Data Type Default Value Description

bitmap BitmapData The bitmapData object to be used
as the material's texture.

normalMap BitmapData The bitmapData object to be used
as the material's DOT3 map.

shininess Number 20 The exponential dropoff value used
for specular highlights.

specular Number 0.5 Coefficient for specular light level.

Pixel Bender materials

Away3D includes a number of materials that make use of Pixel Bender shaders.
These materials will quite often produce effects of a much higher detail than is
possible with the materials listed so far. The ability to use Pixel Bender shaders is
one of the advantages Away3D version 3.x has over Away3D version 2.x. This is
due to the fact that Away3D 3.x targets Flash Player 10, whereas Away3D 2.x
targets Flash Player 9.

Dot3BitmapMaterialF10

The Dot3BitmapMaterialF10 class is a Pixel Bender version of the
Dot3BitmapMaterial class.

protected function applyDot3BitmapMaterialF10 () :void
{
initSphere () ;
initDirectionalLight () ;
materialText.text = "Dot3BitmapMaterialF1l0";
var newMaterial:Dot3BitmapMaterialF1l0 =
new Dot3BitmapMaterialF10 (
Cast.bitmap (EarthDiffuse),
Cast.bitmap (EarthNormal)
)i

currentPrimitive.material = newMaterial;

[161]

Materials

The Dot3BitmapMaterialF10 class extends the BitmapMaterial class, which means
the init object parameters listed for the BitmapMaterial class also apply to the
Dot3BitmapMaterialF10 class.

1
~ The textures used for the bitmap and normalMap parameters must
have the same dimensions.

Parameter Data Type Default Value Description

bitmap BitmapData The bitmapData object to be used
as the material's texture.

normalMap BitmapData The bitmapData object to be used
as the material's DOT3 map.

shininess Number 20 The exponential dropoff value used
for specular highlights.

specular Number 0.7 Coefficient for specular light level.

PhongPBMaterial

The PhongPBMaterial class uses phong shading and normal mapping to add depth
and illuminate a 3D object. In addition, it uses a specular map to define the strength
of the reflected light, with brighter areas reflecting more light than darker areas.

In the following image, which is embedded in the application as the class
EarthSpecular, the oceans are shown in white, meaning that light will be reflected
off those areas. The land masses are shown in black, which prevents light from being
reflected off those areas.

[162]

Chapter 5

protected function applyPhongPBMaterial () :void

{

initSphere() ;
initPointLight () ;
materialText.text = "PhongPBMaterial";
var newMaterial :PhongPBMaterial = new PhongPBMaterial (
Cast.bitmap (EarthDiffuse),
Cast.bitmap (EarthNormal) ,
currentPrimitive,
Cast.bitmap (EarthSpecular)) ;
currentPrimitive.material = newMaterial;

[163]

Materials

The PhongPBMaterial class indirectly extends the TransformBitmapMaterial class,
which means the init object parameters listed for the TransformBitmapMaterial
class also apply to the PhongPBMaterial class.

Parameter Data Type Default Value Description

bitmap BitmapData The texture to be used for the diffuse
shading.

normalMap BitmapData An object-space normal map.

targetModel Mesh The target mesh for which this shader is
applied

specularMap BitmapData null An optional specular map BitmapData,
which modulates the specular reflections.

gloss Number 10 The gloss component of the specular
highlight. Higher numbers will result in a
smaller and sharper highlight.

specular Number 1 The strength of the specular highlight.

PhongMultiPassMaterial

The PhongMultiPassMaterial class is like the PhongPBMaterial class, except that
it can be illuminated from multiple light sources.

protected function applyPhongMultiPassMaterial () :void

{

initSphere () ;

initPointLight () ;
materialText.text = "PhongMultiPassMaterial";

var newMaterial:PhongMultiPassMaterial =

new PhongMultiPassMaterial (
Cast.bitmap (EarthDiffuse),
Cast.bitmap (EarthNormal) ,

currentPrimitive,

Cast .bitmap (EarthSpecular)

)i

currentPrimitive.material =

}

newMaterial;

The PhongMultiPassMaterial class indirectly extends the
TransformBitmapMaterial class, which means the init object parameters listed for the
TransformBitmapMaterial class also apply to the PhongMultiPassMaterial class.

[164]

Chapter 5

Parameter Data Type Default Value Description

bitmap BitmapData The texture to be used for the diffuse
shading.

normalMap BitmapData An object-space normal map.

targetModel Mesh The target mesh for which this
shader is applied

specularMap BitmapData null An optional specular map

BitmapData, which modulates the
specular reflections.

gloss Number 10 The gloss component of the specular
highlight. Higher numbers will result
in a smaller and sharper highlight.

specular Number 1 The strength of the specular highlight.

FresnelPBMaterial

The Fresnel effect refers to the phenomenon where the amount of reflectance seen on
a surface depends on the viewing angle. The most common example of this is seen
on the surface of a body of water. If you look down directly at a pool of water you
will be able to see down through the water without much reflected light. But if you
look at the water's surface from an angle you will see much more reflected light.

The FresnelPBMaterial class replicates this effect by reflecting a sphere map that
represents the surrounding environment by a varying degree according to the
viewing angle of the surface.

protected function applyFresnelPBMaterial () :void

initPlane () ;
materialText.text = "FresnelPBMaterial";

The reflected image comes from a sphere map, which is a texture that displays the
surroundings of an object as if it were reflected off the surface of a sphere. This
texture has been embedded as the sphereMap class.
var newMaterial:FresnelPBMaterial = new FresnelPBMaterial (
Cast.bitmap (Water),
Cast.bitmap (WaterNormal) ,

Cast .bitmap (SphereMap) ,
currentPrimitive,

{

smooth: true

}
)i

currentPrimitive.material = newMaterial;

}

[165]

Materials

You can see how the Fresnel reflection works in the following images. In the image
on the left, the flat areas reflect the base blue water material. When looking at the
surface from a more side on angle, the orange environment material is now reflected.

The FresnelpPBMaterial class indirectly extends the TransformBitmapMaterial
class, which means that the init object parameters listed for the
TransformBitmapMaterial class also apply to the FresnelPBMaterial class.

Parameter Data Type Default Value Description

bitmap BitmapData The texture to be used for the
diffuse shading.

normalMap BitmapData An object-space normal map.

faces Array An array of equally sized

square textures for each face of
the cube map.

targetModel Mesh The target mesh for which this
shader is applied.
envMapAlpha Number 1 The opacity of the environment

map, that is: how reflective the
surface is. 1 is a perfect mirror.

outerRefraction Number 1.0008 The refractive index of the
surroundings.

innerRefraction Number 1.330 The refractive index of the
material.

refractionStrength ~ Number 1 The maximum amount of

refraction to be performed on
the diffuse texture, used to
simulate water.

[166]

Chapter 5

CubicEnvMapPBMaterial

The cubicEnvMapPBMaterial uses environment mapping to add the reflection of
a cube of textures to a base-normal mapped texture.

protected function applyCubicEnvMapPBMaterial () :void

{

initSphere() ;

materialText.text = "CubicEnvMapPBMaterial";

The reflections shown by the CubicEnvMapPBMaterial class come from six textures
that form a cube that appears to surround the 3D object. These six textures are placed

into the sky Array

var sky:Array
sky [CubeFaces
sky [CubeFaces
sky [CubeFaces
sky [CubeFaces
sky [CubeFaces
sky [CubeFaces

var newMaterial :CubicEnvMapPBMaterial

new Array () ;

.LEFT] = Cast.bitmap (Skyleft) ;
.FRONT] = Cast.bitmap (Skyfront) ;
.RIGHT] = Cast.bitmap (Skyright) ;
.BACK] = Cast.bitmap (Skyback) ;
.TOP] = Cast.bitmap (Skyup) ;
.BOTTOM] = Cast.bitmap (Skydown) ;

new CubicEnvMapPBMaterial (
Cast.bitmap (EarthDiffuse),
Cast.bitmap (EarthNormal) ,

sky,

currentPrimitive,

{

!
)i

envMapAlpha:

currentPrimitive.material

0.5

newMaterial;

[167]

Materials

The cubicEnvMapPBMaterial class indirectly extends the
TransformBitmapMaterial class, which means the init object parameters
listed for the TransformBitmapMaterial class also apply to the
CubicEnvMapPBMaterial class.

Parameter Data Type Default Value Description

bitmap BitmapData The texture to be used for the diffuse
shading.

normalMap BitmapData An object-space normal map.

faces Array An array of equally sized square
textures for each face of the cube map.

targetModel Mesh The target mesh for which this shader
is applied.

envMapAlpha Number 1 The opacity of the environment map,

i.e. how reflective the surfaceis. 1is a
perfect mirror.

Loading textures from external files

Although it is quite often and more convenient to embed resources into the SWF file,
there are times when this is not desirable. Away3D includes a number of classes to
aid in loading external resources.

There are some considerations to be aware of when accessing external resources. One
of the issues is that the loading process is asynchronous, which means that the actual
process of downloading an external resource is done in the background. Normally,
you would deal with the data once it has been retrieved by way of a call-back
function, which is called when the Event . COMPLETE event is dispatched.

For a simple bitmap material, the BitmapFileMaterial class deals with this
background loading for you. You supply the URL of the external texture image, and
the BitmapFileMaterial class takes care of all the asynchronous loading process.

Other material types don't have an equivalent of the BitmapFileMaterial to handle
loading of external textures. For this Away3D supplies the TextureLoadQueue class,
which will load a number of external resources as a group and notify you when they
are all ready.

[168]

Chapter 5

BitmapFileMaterial

As you can see, the BitmapFileMaterial is very straightforward to use. By hiding
the details of the asynchronous loading process, the BitmapFileMaterial class
allows us to simply apply it like any other material. All we need to do is supply
the location of the texture file to load.

protected function applyBitmapFileMaterial () :void
{
initSphere() ;
materialText.text = "BitmapFileMaterial";
var newMaterial:BitmapFileMaterial =
new BitmapFileMaterial ("earth diffuse.jpg") ;
currentPrimitive.material = newMaterial;

}

The BitmapFileMaterial class extends the BitmapMaterial class, which means
the init object parameters listed for the BitmapMaterial class also apply to the
BitmapFileMaterial class.

Parameter Data Type Default Value Description

url String Specifies the location of the texture
image file to load.

checkPolicyFile Boolean false Specifies the value for the
checkPolicyFile property of the
LoaderContext object used to load
the file.

Using the TextureLoadQueue

The process becomes a little more complicated when you need to load several
textures to create one material. Take the Dot3BitmapMaterial class as an example.
It requires both diffuse texture and normal map.

The TextureLoadQueue can be used to load multiple external resources as a
group. This allows us to initiate the loading of all the textures required by a class
like Dot3BitmapMaterial, and then create a new instance of the class when all
are loaded.

protected function applyExternalDot3BitmapMaterial () :void
{

initSphere () ;

initDirectionalLight () ;

materialText.text = "External Dot3BitmapMaterial";

[169]

Materials

First, we create a new instance of the TextureLoadQueue class.

var textureLoadQueue:TextureLoadQueue =
new TextureLoadQueue () ;

We then need to create two additional objects for each file to be loaded. The first
is a URLRequest object, whose constructor takes the URL of the external file as the
first parameter.

var req:URLRequest =
new URLRequest ("earth diffuse.jpg");

The second is a TextureLoader object.

var loader:TextureLoader = new TextureLoader () ;

We then pass both of these objects to the TextureLoadQueue addItem() function.

textureLoadQueue.addItem(loader, req) ;

This process is repeated for the normal map texture file.

req = new URLRequest ("earth normal.jpg")
loader = new TextureLoader () ;
textureLoadQueue.addItem(loader, req);

The Event . COMPLETE event will be dispatched by the TextureLoaderQueue object
once all of the external files have been loaded. Once this event has been dispatched,
we can get access to the bitmap data required to create the material. For convenience,
we will create an anonymous function to respond to this event.

textureLoadQueue.addEventListener (
Event .COMPLETE,

function (event:Event) :void

{

We create two BitmapData variables, which will be assigned to the data contained in
the two external files we have just loaded.

var diffuse:BitmapData;
var normal:BitmapData;

Unfortunately, the TextureLoaderQueue does not index the loaded images in a way
that is easy to access. Instead, it provides an array of TextureLoader objects, and
each individual TextureLoader object can then be identified and then processed.
This involves iterating over the whole array to find out which TextureLoader
objects relate to which external files.

[170]

Chapter 5

for each (var image:TextureLoader in textureLoadQueue.

{

Regardless of which external file the current TextureLoader object obtained its
data from, we first create a new BitmapData object and draw the contents of the
TextureLoader into it.

images)

var bitmapData:BitmapData =
new BitmapData (image.width, image.height);
bitmapData.draw (image) ;

Using the filename property of the current TextureLoader object, we can work
out which external file it obtained its data from. This allows us to reference the new
BitmapData object we just created with either the diffuse or normal variable.

if (image.filename == "earth diffuse.jpg")
diffuse = bitmapData;

else if (image.filename == "earth normal.jpg")

normal = bitmapData;

}

Now that we have a reference to the diffuse and normal-map bitmaps, we can go
ahead and create the Dot3BitmapMaterial object.

currentPrimitive.material =
new Dot3BitmapMaterial (diffuse, normal) ;

}
)i

Finally, with the anonymous call back function in place we can now request that the
TextureLoaderQueue start loading the files by calling its start () function.

textureLoadQueue.start () ;

While we have used the TextureLoaderQueue class to load two

~ external image files here, the same logic applies to loading just one file or
Q dozens of files. You can also use the Flash / Flex Loader class directly to

load external resources.

[171]

Materials

Summary

Away3D includes a large selection of materials. The various shading techniques
that can be used by these materials were covered, which allows for a selection

of materials ranging from those that display a simple texture map to those more
advanced materials, which produce more interesting detailed results like reflections,
lighting, and shadowing. We have covered Pixel Bender, and seen how it has been
used by Away3D to create some of these advanced materials.

Those materials that can be lit from an external light source were listed, along with
a table that breaks down the types of light sources that affect these materials.

We have seen how resources, like textures, can be embedded into the final SWF, or
loaded from external resources. Embedding resources is generally the best solution
as it avoids a number of potential issues like security restrictions and network
failures, but for those situations where loading external resources is required, we
saw how the BitmapFileMaterial and LoaderQueue classes can be used.

In the next chapter, we will learn how to load and display more complex 3D objects,
which can be used in place of the primitive 3D objects that we have been using since
Chapter 1, Building Your First Away3D Application.

[172]

Models and Animations

As we saw in Chapter 2, Creating and Displaying Primitives, it is possible to create a 3D
object from the ground up using basic elements like vertices, triangle faces, Sprite3D
objects, and segments. However, creating each element manually in code is not
practical for more complex models. While the classes from the away3d.primitives
package offer a solution by providing a way to quickly create some standard

shapes, advanced applications will need to display more complex shapes. For those
situations where these standard primitive shapes do not provide enough flexibility,
Away3D can load and display

3D models created by external 3D modeling applications.

3D modeling applications are specifically designed to provide a visual environment
in which 3D models can be manipulated. It is certainly much more convenient to
create or edit a 3D mesh in one of these applications than it is to build up a mesh in
code using ActionScript.

Away3D can directly load a wide range of 3D formats. The process of exporting a
3D mesh into a file that can be used with Away3D will be covered for the following
3D modeling applications:

e 3ds Max: A popular commercial modeling, animation, and rendering
application which runs on Windows.

e Blender: A free and open source modeling application, which is available on
a number of platforms, including Windows, Linux, and MacOS.

e Milkshape: A commercial low-polygon modeler which runs on Windows
that was originally designed for the game Half-Life.

e Sketch-up: A free 3D modeling application provided by Google. A
commercial version is also available that includes a number of additional
features. Sketch-up runs on Windows and MacOS.

Models and Animations

Actually creating a model in these 3D modeling applications is outside the scope of
this book. However, 3D models are provided that can be loaded and then exported
from these applications, which will allow you run through the procedure without
having to know how to make a 3D model from scratch.

This chapter covers the following:

e Exporting a model from a number of 3D modeling applications

¢ Loading a model file in Away3D, both from an embedded resource and from
an external file

e Converting 3D models into ActionScript classes

3D formats supported by Away3D

Away3D includes classes that can load a wide range of 3D model file formats. All
the supported formats can be used to load a static 3D model, while a smaller number
can be used to load animated models. The following table lists the 3D model formats
supported by Away3D, their common extensions, whether they can load animated
3D models, and the Away3D class that is used to load and parse them.

Format Extension Static Animated Away3D Class
Collada DAE * * Collada
Quake II MD2 * * Md2

3DS MAX Ascii ASE * Ase

Away3D AWD * AWData
Google Earth KMZ * Kmz

3DS Max 3DS * Max3DS
Wavefront OB]J * Obj
ActionScript AS * *

Exporting 3D models

The following instructions show you how to export a Collada file from a number of
different 3D modeling applications. Collada is an open, XML-based format that has
been designed to provide a way to exchange data between 3D applications. Away3D
supports loading both static and animated 3D models from the Collada format.

[174]

Chapter 6

Exporting from 3ds Max

3ds Max is a commercial 3D modeling application. At the time of writing, the latest
version of the ColladaMax plugin, which is the plugin that we will use to export the
3D model, was 3.05C. This version supports 3ds Max 2008, 3ds Max 9, 3ds Max 8
SP3, or 3ds Max 7 SP1. Note that this version does not support 3ds Max 2010 or 2011.

A trial version of 3ds Max 9 is available, although it can be difficult to find. You
should be able to find a copy if you search the Internet for Autodesk3dsMax2009_
ENU TrialDownload.exe, which is the name of file that will install the trial version
of 3ds Max 9.

1.

» N

N o e

10.

Download and install the ColladaMax plugin from http://sourceforge.
net/projects/colladamaya/files/.

Open 3ds Max.

Click File | Open. Select the MAX file you wish to open and click on the
Open button.

Click File | Export from within 3ds Max.
Select COLLADA (*.DAE) from the Save as type drop-down list.
Select the same directory where the original MaAX file was located.

Type a file name for the exported file in the File name textbox, and click on
the Save button.

In the ColladaMax Export dialog box make sure the following checkboxes
are enabled:

° Relative Paths
° Normals

o

Triangulate

If you want to export animations, enable the Enable export checkbox.

If you want to export a specific range of frames, enable the Sample
animation checkbox and enter the required values in the Start and
End textboxes.

[175]

Models and Animations

11. Click on the OK button to export the file.

Colladahdax Export (=5

— Standard Options
[V Bake Matices M Relative Paths

— Geometmy
v Nomals v Triangulate [~ ®Refs
[Tangents/Binomals

r Animation
[~ Enable esport I Create clip
¥ Sample animation |1IJD ﬂ |1IJD ﬂ

ak. ‘ Cancel ‘

Exporting from MilkShape

The Collada exporter supplied with MilkShape does not export animations. So

even if the MilkShape Ms3D file we are loading contains an animated model, the
exported Collada DAE file will be a static mesh. A trial version of MilkShape can be
downloaded and installed from its website at http://chumbalum.swissquake.ch/.

1. Click File | Open. Select the Ms3D file you wish to open and click on the
Open button.
Click File | Export | COLLADA....
Select the same directory where the original Ms3D file was located.

Type a filename for the exported file in the File name textbox and click the
Save button.

Exporting from Sketch-Up

Like Milkshape, Sketch-up does not support exporting animated Collada files.
Sketch-Up can be downloaded for free from http://sketchup.google.com/.

1. Click File | Open. Select the skp file you wish to open and click on the
Open button.
Click File | Export | 3D Model....
Select Collada File (*.dae) from the Export type combobox.

Select an appropriate directory, and type a filename for the exported file in
the File name textbox.

[176]

Chapter 6

Click on the Options... button.
Make sure the Triangulate All Faces checkbox is enabled.

If the Export Texture Maps option is enabled, Sketch-Up will export the
textures along with the DAE file.

Click on the OK button to save the options.
Click on the Export button to export the file.

DAE Export Options @

Geomekry
I Export Two-Sided Faces:
™ Export Edges

|v Triangulate &ll Faces
=

I Export Hidden Geometry

I Preserve Component Hierarchies
Materials

Iv Export Texture Maps

I™ Use "Color By Layer" Materials
Credits

[~ Preserve Credits

Ok | Cancel

Exporting from Blender

The latest version of the Collada exporter for Blender, which is version 0.3.162 at
the time of writing, does support exporting animations. However, in most cases
Away3D will not load these animations correctly. It is recommended that only static
meshes be exported from Blender to a Collada file.

1. Click File | Open.... Select the BLEND file you wish to open and click on the
Open button.
Click File | Export | COLLADA14 (*.dae)

Type a filename for the exported file in the directory where the original
BLEND file was located in the Export File textbox.

4. Make sure the Triangles and Use Relative Paths buttons are pressed.

[177]

Models and Animations

5. Click on the Export and Close button.

.) Blender
& :| ¥ File Add Timeline Game Render Help [=[SR2-Model [%] [=[SCEScene B3 ©

Collada 1.4.0 piugin for Blender

Wersion: 03,162

f this plugin is valuahle totyou ar Your company, please consider a donation at
tcom to support this plugin, Thanks 2 lot!

hittpcdfeolladakilender luzo

Expart

Expoart file:

Disable Physics

Use LY Image Mats
Apply modifiers

| Cancel | |Exp0n and C_lo_sé.| | Export |

(&3 v serpte [=]0] []coLLena 1atdas)])
r ~ Panals |@ 5| t@@ 1

" Mulfires - 5 ; Hadifiers
[Add Muffires | To: Cube

[EIMECub: [F[OBCube | | 4

Uerfer Groups i
LU Tenhure
Usrhex Color
[Mew T Delefe |

A note about the Collada exporters

Despite being free and open standard, exporting to a Collada file that can be
correctly parsed by Away3D can be a hit-and-miss affair. The Collada exporters
for 3ds Max are a good example. During testing, neither the built-in Collada
exporter included with 3ds Max, nor the third-party OpenCollada exporter from
http://opencollada.org (version 1.2.5 was the latest version at the time of
writing) would export an animated Collada file that Away3D could read. At best

[178]

Chapter 6

Away3D would display a static mesh, and at worst it would throw an exception
when reading the DAE file. Likewise, neither of the Collada exporters that come with
Blender (which was at version 2.49b at the time of writing) would consistently export
an animated Collada mesh that was compatible with Away3D.

It is important to be aware that just because a 3D modeling application says that it
can export to a Collada file, this is no guarantee that the resulting file can be read
correctly by Away3D.

Loading a 3D model

The general steps involved in loading an embedded model are as follows:

1. Import the necessary classes.

2. Create a class that extends the Away3DTemplate class from Chapter 1,
Building Your First Away3D Application.

3. Embed the model file and the texture file.
Create a constructor that calls the Away3DTemplate constructor.
5. Override the initScene () function.

Create a material from the embedded texture resource
° Use the parse () function from the respective model loading class
to create an Object3D, Mesh Or ObjectConatiner3D object

° Assign the material to the loaded 3D object

° Add the 3D object to the scene

o

Play the desired animation for those models that support animations
The general steps to load an external model file are similar:

Import the necessary classes.

Create a class that extends the Away3DTemplate class from Chapter 1,
Building Your First Away3D Application.
3. Create a constructor that calls the Away3DTemplate constructor.
Override the initScene () function.
° Use the 1load () function from the respective model loading class
to create a Loader3D object

° Add the Loader3D object to the scene

[179]

Models and Animations

5. Assign a function to respond to the Loader3DEvent . LOAD_SUCCESS event
o

Manually apply a material if needed

e}

Play the desired animation for those models that support animations

Animated models

The Collada DAE, Quake 2 MD2, and ActionScript AS model formats are unique in
that they can be used to load animated 3D objects. But there are a number of subtle
differences between the classes used to load and animate each of these formats,
especially with the option of embedding the resources or loading them from
external files.

MD2—Loading an embedded file

MD?2 is the model format used by Quake 2. These models are ideal for use with
Away3D because they have a low polygon count and support animations. Let's
create an application called MD2EmbeddedDemo that demonstrates how a MD2
file can be embedded and loaded.

package

{
The parsed 3D object will be returned to us as a Mesh.

import away3d.core.base.Mesh;

We will use the static functions provided by the cast class to cast objects
between types.

import away3d.core.utils.Cast;
The class that will load the MD2 files is called Md2.

import away3d.loaders.Md2;

We will apply a BitmapMaterial to the 3D object. Chapter 5, Materials, covers the
BitmapMaterial class in more detail.

import away3d.materials.BitmapMaterial;

The AnimationData class contains the functions we will use to animate the 3D object
once it is loaded.

import away3d.loaders.data.AnimationData;

[180]

Chapter 6

MD2 models can be embedded, but because the ActionScript compiler has no
understanding of the MD2 format, they need to be embedded as a raw data file
(that is, with a MIME type of application/octet-stream).

[Embed (source="ogre.md2", mimeType="application/octet-stream")]
protected var MD2Model:Class;

By default, the textures for MD2 models are in the PCX format, which is not
supported by Away3D. Here we have converted the original PCX image file to
a JPG image, which is then embedded. We don't need to specify a MIME type,
because the ActionScript compiler understands the format of a JPG image.

[Embed (source="ogre.jpg")]
protected var MD2Material:Class;

The Mesh representing the 3D object is referenced by md2Mesh property.

protected var md2Mesh:Mesh;

The constructor calls the base away3DTemplate class constructor, which will initialize
the Away3D engine.

public function MD2EmbeddedDemo ()

{

super () ;

}

The initScene () function is overridden to load the MD2 file and to add the
resulting 3D object to the scene.

protected override function initScene () :void

{

super.initScene () ;

First, we create a new BitmapMaterial object from the embedded image file.

var modelMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (MD2Material)) ;

The parse () function from the Md2 class is used to load an embedded MD2 file,
which is converted to a ByteArray using the bytearray () function from the cast
class. The parse () function will return a Mesh object, which is then assigned to the
md2Mesh property.

md2Mesh = Md2.parse (Cast.bytearray (MD2Model) ,

{

[181]

Models and Animations

We specify the init object parameters necessary to scale, position, and rotate the
3D object within the scene so it will be displayed nicely on the screen. You can
learn more about transforming 3D objects like this in Chapter 3, Moving Objects.

scale: 0.01,
z: 100,
rotationY: -90

}
)i

The material is then assigned to the 3D object via the material property.

Unlike the primitive 3D objects we have used previously, materials
M assigned via the material init object parameter will not be
Q applied to the 3D object we are loading using the Md2 class. The
section The problem with init and Init objects below explains why
this is the case.

md2Mesh.material = modelMaterial;

The 3D object is added to the scene to make it visible.

scene.addChild (md2Mesh) ;

Most MD2 models define a number of animations like stand, run, attack, and jump.
These animation names correspond to the actions of the characters in the game
Quake 2. While these animation names are common, they are not guaranteed to be
included in an MD2 model file. Before we play the desired animation, we first check
to see if it is included in the loaded 3D object.

var animationData:AnimationData =
md2Mesh.animationLibrary.getAnimation("stand") ;

If the animationData variable is not null then the loaded 3D object includes the
desired animation.

if (animationData != null)
The animation can then be played by calling the play () function.

animationData.animator.play () ;

[182]

Chapter 6

MD2—Loading an external file
The process for loading an external MD2 file is much the same as loading an

embedded one. Let's create a call called MD2ExternalDemo to load and display
an external MD2 file and see how it differs from the MD2EmbeddedDemo above.

package

{

import away3d.core.base.Mesh;

We need to register a function to be called when the 3D object is loaded, so we
can play the initial animation. This function will take a Loader3DEvent object
as a parameter.

import away3d.events.Loader3DEvent;

Instead of returning a Mesh, the Md2 class will instead return a Loader3D object,
which is used as a placeholder while the 3D object is loaded.

import away3d.loaders.Loader3D;
import away3d.loaders.Md2;
import away3d.loaders.data.AnimationData;

The BitmapFileMaterial class gives us a convenient way to load an external image
file and apply it as a material. Chapter 5, Materials, covers the BitmapFileMaterial
class in more detail.

import away3d.materials.BitmapFileMaterial;

public class MD2ExternalDemo extends Away3DTemplate

{

protected var mesh:Mesh;

public function MD2ExternalDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;

When loading an external file, we call the 1oad () function from the Md2 class. The
first parameter is the URL of the MD2 file.

[183]

Models and Animations

Due to a bug in the Loader3D loadTextures () function, the URL supplied to the
load () function requires a slash, even if the file to be loaded is in the same folder
as the SWF file.

The 1oad () function will return a Loader3D object. This Loader3D object is a
placeholder, to be displayed while the 3D object is loaded.

var placeHolder:Loader3D = Md2.load("./ogre.md2",
{
scale: 0.01,
z: 100,
rotationY: -90

!
)i

When the Loader3D.LOAD_SUCCESS event is dispatched, the 3D object has been
loaded and parsed, and is ready to be used. We will want to set the initial animation
at this point, so we register the onLoadSuccess () function to be called when the
event is triggered.

placeHolder.addEventListener (
Loader3DEvent .LOAD SUCCESS,
onLoadSuccess) ;

The placeholder Loader3D object is added to the scene. When the 3D object is
loaded, it will be added to the scene and the placeholder 3D object (which is
a Cube primitive) will be removed.

scene.addChild(placeHolder) ;

}

protected function onLoadSuccess (event:Loader3DEvent) :void

{
In the onLoadSuccess () function, we get a reference to the loaded 3D object.

mesh = event.loader.handle as Mesh;

The Md2 class does have the ability to create its own material from the texture
information in the MD2 file. Since Flash has no support for the PCX format, which
is the default format used by MD2 models, it will attempt to load a JPG image with
the same name as the PCX file referenced in the MD2 file. The new extension can be
changed from the default of JPG to another image format supported by Flash like
PNG or GIF by specifying the pcxConvert init object parameter that is supplied

to the Md2 load () function.

[184]

Chapter 6

However, quite often the texture file referenced by the MD2 file is incorrect, or
includes a long path like quake2/baseq2/players/modelname/texture.pcx.

This unpredictability in texture filenames is best avoided by creating a new
BitmapFileMaterial instance, passing the URL of the texture file to its constructor,
and specifying it at the material to be used by the loaded 3D object via the
material property.

mesh.material = new BitmapFileMaterial ("ogre.jpg") ;

We then play the animation called stand.

var animationData:AnimationData =
mesh.animationLibrary.getAnimation ("stand") ;

if (animationData != null)
animationData.animator.play () ;

}
}

Collada—Loading an embedded file

Loading an embedded Collada model file is quite similar to the process of loading an
embedded MD?2 file: the model file and the textures are embedded, and a 3D object is
created using the parse () function from the model loading class (named collada in
this case).

package

{
import away3d.containers.ObjectContainer3D;
import away3d.core.utils.Cast;

The collada class will be used to parse the embedded Collada DAE file.

import away3d.loaders.Collada;

import away3d.loaders.data.AnimationData;
import away3d.materials.BitmapMaterial;
import flash.events.Event;

public class ColladaEmbeddedDemo extends Away3DTemplate

{

[185]

Models and Animations

The Collada DAE file is embedded as a raw data file. We could also have specified
the MIME type to be "text/xml", since a Collada file is actually an XML file.

[Embed (source="beast .dae", mimeType="application/octet-stream")]
protected var ColladaModel:Class;

[Embed (source="beast.jpg")] protected var ColladaMaterial:Class;

public function ColladaEmbeddedDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;
var modelMaterial:BitmapMaterial = new
BitmapMaterial (Cast.bitmap (ColladaMaterial)) ;

Here we use the static parse () function from the collada class to create an
ObjectContainer3D object containing the meshes and animations contained
in the model file.

var colladaContainer:0ObjectContainer3D =
Collada.parse (Cast.bytearray (ColladaModel) ,

The models in a Collada file can use a number of separate materials to achieve their
final appearance. The Collada file used in this example only references one material,
but the logic is still the same. We define an init object parameter called materials,
and to that we assign another init object that maps Away3D materials to the material
names defined in the Collada file. In this example, the single material defined in the
Collada file is called monster.

{

materials:

{

monster: modelMaterial

b
The 3D object is then rotated, so it will be displayed nicely on the screen.

rotationY: 90

[186]

Chapter 6

The scale of the 3D object is increased to make it easier to see on the screen.

colladaContainer.scaleX =
colladaContainer.scaleY =
colladaContainer.scalez = 20;

scene.addChild (colladaContainer) ;

Here we get a reference to the AnimationData object that holds the animation
called default.

var animationData:AnimationData =

colladaContainer.animationLibrary.getAnimation ("default") ;

If the animation exists, we then play it.

if (animationData != null)
animationData.animator.play () ;

Collada—Loading an external file

Loading an external Collada file is much the same as loading an embedded file. The
big differences are that we don't need to manually assign any materials, and the
animations are played once an event has been dispatched indicating that the model
has been loaded.

package

{

Loading external files is an asynchronous process, and the Loader3DEvent class is
used by the function registered to the Loader3DEvent . LOAD SUCCESS event that
lets us know that the file has been loaded successfully.

import away3d.events.Loader3DEvent;
import away3d.loaders.Collada;

The Loader3D class is used as a placeholder while the Collada file is being loaded.

import away3d.loaders.Loader3D;
import away3d.loaders.data.AnimationData;

import flash.events.Event;

public class ColladaExternalDemo extends Away3DTemplate

{

[187]

Models and Animations

public function ColladaExternalDemo ()

{

super () ;

}

protected override function initScene() :void

{

super.initScene () ;

Here we use the static 1oad () function from the collada class. This function takes
the URL of the Collada file to be loaded (remember to add a slash to the URL, even
for files in the same folder as the SWF file), and returns a Loader3D object. We
don't need to worry about supplying any information about the materials to be
used, as the collada class will create the materials for us by loading the image
files referenced in the DAE file.

var placeHolder:Loader3D = Collada.load("./beast.dae",
{
rotationY: 90
}
)i

The addonSuccess () function from the Loader3D class provides a short-hand way
to register a function to be called when the Loader3DEvent . LOAD_SUCCESS event
is dispatched.

placeHolder.addOnSuccess (onLoadSuccess) ;

The Loader3D object is added to the scene, and will display a Cube primitive while
the Collada file is being loaded.

scene.addChild (placeHolder) ;

}

When the onLoadsuccess () function is called, we can scale the 3D object, get access
to the default animation data, and then play it if it exists.

protected function onLoadSuccess (event:Loader3DEvent) :void
{
event.loader.handle.scaleX =
event.loader.handle.scaleY =
event.loader.handle.scaleZ = 20;
var animationData:AnimationData =
event .loader.handle.animationLibrary.getAnimation (
"default") ;
if (animationData != null)
animationData.animator.play () ;

[188]

Chapter 6

AS—Loading a converted model

Models can also be defined in an ActionScript class. You may recall the Sea Turtle
"primitive" from Chapter 2, Creating and Displaying Primitives, which was an example
of a complex model that could be created by instantiating the seaTurtle class.

The Collada DAE and Quake 2 MD2 formats were both demonstrated being loaded
from external files and from an embedded resource. Because of the nature of an
ActionScript class, loading it from an external file does not make sense, which is why

there is only one application shown here demonstrating the use of models stored in
an AS file.

For this application, we will use a class called ogre, which has been converted
from the MD2 model used in the MD2ExternalDemo and MD2EmbeddedDemo classes
above. The process of creating a class like ogre is explained in the following section
Converting a loaded model to an ActionScript class.

package
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;
import away3d.materials.BitmapMaterial;

public class AS3ModelDemo extends Away3DTemplate
[Embed (source="ogre.jpg")]
protected var AS3Material:Class;
protected var model:Mesh;

public function AS3ModelDemo ()

{

super () ;

}

protected override function initScene () :void
super.initScene () ;
var modelMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (AS3Material)) ;

Just like a primitive 3D object, the ogre model is created by instantiating a standard
ActionScript class. There is no need to use an intermediary class like collada or Md2
to load or parse a file.

[189]

http://www.zshareall.com

Models and Animations

You will note that we have passed in the scaling init object parameter, and then
set the material and position directly via the properties exposed by the Mesh class.
This is because the tool that was used to create this particular As3 class only reads
the scaling init object parameter, and does not pass the init object down to the
underlying Mesh class constructor. This behavior is dependent on the particular way
that a modeling application exports an AS3 Away3D model class, so this is not

a universal rule.

model = new Ogre (

{

scaling: 0.01
}
)i
model .material = modelMaterial;
model.z = 100;
scene.addChild (model) ;

Static models

The 3DS, AWD, KMZ, ASE, or OBJ model formats can all be used to load and display
static 3D objects. The following samples presented show you how to load embedded
and external files from all of these formats.

3DS—Loading an embedded file

The 3DS model format has been around for over a decade, and is widely supported
by 3D authoring applications and 3D engines alike. While many formats claim to
offer a "universal" standard, the 3DS format can almost be thought of as a de-facto
standard, thanks to its popularity.

package
{
import away3d.containers.ObjectContainer3D;
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;
import away3d.loaders.Max3DS;
import away3d.materials.BitmapMaterial;

public class Max3DSEmbeddedDemo extends Away3DTemplate

{

[Embed (source="monster.3ds", mimeType="application/octet-stream")]
protected var MonsterModel:Class;

[190]

Chapter 6

[Embed (source="monster.jpg")]
protected var MonsterTexture:Class;

public function Max3DSEmbeddedDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene () ;
var modelMaterial:BitmapMaterial =

new BitmapMaterial (Cast.bitmap (MonsterTexture)) ;
var monsterMesh:0ObjectContainer3D =

Max3DS.parse (Cast .bytearray (MonsterModel) ,

{

When embedding a 3D model file it does not make sense for the Max3Ds class to try
and load the materials from external image files. Indeed, if the Max3Ds class does
try to load materials from external images that don't exist an error will be displayed
in place of the 3D object that you are trying to load. You can see an example of this
error in the image below.

To prevent the Max3Ds class from trying to load external image files we set the
autoLoadTextures init object parameter to false.

autoLoadTextures: false,
z: 200

!
)i

The parse () function will return a ObjectContainer3D object. The children held
by this ObjectContainer3D object represent the 3D objects we have loaded from
the 3DS file. We loop through each child, applying the material we created from
the embedded texture.

for each (var child:Mesh in monsterMesh.children)
child.material = modelMaterial;
scene.addChild (monsterMesh) ;

[191]

Models and Animations

If the autoLoadTextures parameter is not set to false, you may see an error as in
the following screenshot:

Adobe Flash Player 10 ==]

File ‘Wiew Contral Help

Loading lexture...
Error #20335: URL

Not Found. URL.:
file:///D|/Temporar

y%20F1les/MONS
TER.JPG

3DS—Loading an external file

Loading a model from an external 3DS file is very easy. We simply supply the
location of the 3DS file to the Max3Ds load () function, and it will load the model
and any materials referenced by the 3DS file.

package

{
import away3d.core.utils.Cast;
import away3d.loaders.Loader3D;
import away3d.loaders.Max3DS;

public class Max3DSExternalDemo extends Away3DTemplate

{

public function Max3DSExternalDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;

[192]

Chapter 6

Again, remember to add the slash to the URL.

var monsterMesh:Loader3D = Max3DS.load("./monster.3ds",

{

z: 200

!
)i

scene.addChild (monsterMesh) ;

AWD—Loading an embedded file

The AWD format has been designed specifically for use with Away3D. It is an

ASClI-based format, which means it can be viewed in a regular text editor.

package
{
import away3d.core.base.Object3D;
import away3d.core.utils.Cast;
import away3d.loaders.AWData;
import away3d.materials.BitmapMaterial;
import away3d.core.base.Mesh;
import away3d.containers.ObjectContainer3D;

public class AWDEmbeddedDemo extends Away3DTemplate

{

[Embed (source="monster.awd", mimeType="application/octet-stream")]

protected var MonsterModel:Class;
[Embed (source="monster.jpg")]
protected var MonsterTexture:Class;

public function AWDEmbeddedDemo ()

{

super () ;

protected override function initScene() :void

{

super.initScene () ;
var modelMaterial:BitmapMaterial =

new BitmapMaterial (Cast.bitmap (MonsterTexture)) ;

[193]

Models and Animations

The parse () function will return an object3D object. In this case, this object is
actually an instance of the ObjectContainer3D class. So we use the as statement
to cast the returned object3D object to an ObjectContainer3D object.

var monsterMesh:0ObjectContainer3D =
AWData.parse (Cast.bytearray (MonsterModel) ,

{

z: 200

}

) as ObjectContainer3D;

We use a for loop to inspect each of the children of the ObjectContainer3D object.

for each (var object:0bject3D in monsterMesh.children)

{

Again we use the as statement, but this time we are casting the children of the
ObjectContainer3D object to a Mesh object.

var mesh:Mesh = object as Mesh;

If the cast was successful (that is, the mesh variable is not nul1) then we assign the
material created using the embedded resources to the mesh.

if (mesh != null)
mesh.material = modelMaterial;

scene.addChild (monsterMesh) ;

}
}
}

The awData class will attempt to load the materials referenced in the AWD file from
external images using the BitmapFileMaterial class. There is no option that can
be set to stop this behavior, which means that you may see an exception thrown if
the SWF does not have the correct permissions to access the file. However this is not
a big problem, as only the debug versions of the Adobe Player will display these
exceptions, so the vast majority of end users will not see the warning.

The exception you may see will read something like:

SecurityError: Error #2148: SWF file filey///D | /Temporary%?20Files/
AWDEmbeddedDemo.swf cannot access local resource file;///D |/
Temporary%20Files/monster.jpg. Only local-with-filesystem and trusted local
SWF files may access local resources.

[194]

Chapter 6

at flash.display::Loader/get content()

at away3d.materials::BitmapFileMaterial/onComplete()[C:\Away3D\away3d\
materials\BitmapFileMaterial.as:62]

You can work around this by removing any reference to external image files from the
AWD file. Since the AWD format is ASCII-based format, you can open it in a regular
text editor.

The following image is of the original AWD file. The text monster.jpg has been

highlighted on line 7.
1 D\ Temparary Files\manster.awd - MNotepad++ E=a B
File Edit Search ‘iew Encoding Language Settings Macro Run TedExX Pluging Window 7 x
sHFEHB | 4dDD|2e| it %s| BE= BE Eev 7

=] maonster.awd

S/ AWDataExporteriIR wersion 1.0, Away3D Flash 10, generated by Away3D:

http: //www. avayid. com

#v:1.0/AIR

Hf:2

fir:objectid

#o

0,1,0,0,-1.1565999999595994,0,1,0,5.19005,0,0,1,-20.14075
aw_D,D,D,D,D,false,false,false,false,—l.1568999999999994,9.19005,—20.14075,h0n3ter.jpg

#d
vi0.210d/£.13968/-2.1a00,1.1322/b.1ec3/-6.12ef,3.1fa0/b. 163£/-5.1d35, 1. 1c?7£/10.c77/-1. 1c43
,2.1£858/7.0320/-9.1919,5.1234/6. 1fac/-58.1b3d, 4. 121a/-3.683£/-a.958c, 5.23£6/3.21b4/-9. 1be5, 3
L086/1.133c/-bh.06e,3.1b9d/-3.02ce/-a.2677,2.0144/-9.4b0/ -9, 16bc, 3.0282/-9.836/-8.ab0,-0.0
81/-a.26£2/-2.815,2.d16/-5.2500/-6.£09,1.02£6/-a.1130/-5.2005,2.1da?/-0. 1leaf/0. 16c2, 4. 106
1/-0.639/1.8£3,2.2335/-1.1835/-0.2395,2.02ca/3.15d2/3.923, 4. 1a2c/4.cdd/3 .65, 0.150bc/5. 164
2/7.b76,2.835/8.1baa/6.270c,-0.b2c/ 2. 158d/58.126,0.0115/d. 1c01/ 7. 141k, -0.a05/11.511/9. cth
,1.c10/f.10de/7.723,-1.22de/11.6c£/9.1706,1.121b/13.59c/7.2245,7.147t/a.164e/-1.2621,4.25
a9/-8.££2/-7.710,5.1a1f/-3.02b0/-58.744a,8.58e7/8.14d2/1.43e, 6.253e/a.02af/2.248e, 6. 1c3d/d. 1
ass/4.1912 ,7.8ec/4.1d33/-5.12£4,7.1741/-0.115£/-6.a85,5. 2297/ -6.ded/-5.4£1,7.257a/1.9b5/-
Z.4e0,7.11b4/6.1547/2.1018,5.9el/-2.£d7/-0.17ca, 4. 1bat/-5.25de/-2.1£70, 4. 13fa/-4. 1bcs/ -1,
228d,6.1109/6.0ad/2.23e0,3.1327/8.1f4e/7.c13,5.c94/-0.03a7/0.2633,4.12ee/-1.b59/-0.be6, 3.
10bd/-9.d75/-0.44f,3.83b/-5.a0b/-2.d25,1.018b/-5.1£20/-0.4d05, 2. 16£d/-4.032e/-2.16%90,4.17a
0/10.0212/3.2357,1.1147/12 . 5af/-0.4£9,2.1faf/12.9a5/5. 194, 5. 1570/ £. 1653 /5. 1a54,3 . 1495/ -5
.26b8/-5.1704,1.2085/-a.2084/-2.22e5,9.cdb/-7.9c2/-4.01f2, 7. aa4/-6.49a/-0.125b,4.23b5/-7.
196c/1.11df, 4. 190/ -&.138a/2.03584,8.boe/~-a. 1f2c/-3.165¢,4.895/-c. 1ebe/ -2, 13a0,a. 1547/-5.2
6e6/3.1bbe, 7.21£0/-6.13fe/5.1e0b,5.22b5/-6.1ac2/5.1££7, 6.1914/-5.17£d/3 .0e4,a.40d/-a.b18/
4.741,8.02a6/-a.0290/3.12dd, 9. 1bf4/-7.£7/6.952,8.2455/-5. lade/7.d7d, 7. 1£91/-4.19a3/6.174
e, 7.166c/-6.01b3/5.51b.8.1fe?/-68.23ce/4.20a,8.9b6/-9.15d4/4.0352.9.1377/-a.20cd/9.1937.86.

T EY

Mo 48865 chars 48880 bytes 16 lines Le ¥ Coli 76 Sel: 1111 bytes)in 1ranges UNE AMET NS

[195]

Models and Animations

In this next image the text monster.jpg has been removed.

Ea D:\Dropbox\DeveIopmerrt\Projects\Away3DBook\ModeI Loading\src\monster.awd - Motepad++ ==
File Edit Search View Encoding Language Settings Macro. RBun TextFX Plugins ‘Window 7 X
OHE LB DRI eimE 1 BEIE BExasv

= monster. awd

i f/AWDataExporteriIR wersion 1.0, Away3D Flash 10, generated by Away3D:

RS

http://www. avayid. com

2 #vil.0/AIR

5 #f:2

4 #t:objectid

5 #o

& 0,1,0,0,-1.1568999999999594,0,1,0,9,15005,0,0,1,-20.14075

7 aw 0,0,0,0,0,false,false, false,false,~-1.15638999590908004 9. 19005, -20. 14075,

g #d

= vi0.210d/£.1396/-2.1a00,1.1322/b.1ec3/-6.12ef,3.1fa0/b. 163£/-5.1d35, 1. 1c?7£/10.c77/-1.1c43
,2.1£88/7.0320/-9.1919,5.1234/6. 1fac/-6.1b3d,4.121a/-3.83£/-2.98¢c,5.23£6/353.21b4/-9. 1be5, 3
.086/1.133c/-b.06e,3.1b9d/-3.02ce/-a.2677,2.0144/-9.4b0/-9. 16bc,3.0262/-9.8368/-8.ab0,-0.0
81/-a.26£2/-2.815,2.d16/-5.2590/-6.£09,1.02£6/ -a.1130/-5. 2005, 2. 1da?/-0. leaf/0. 16c2, 4. 106
1/-0.639/1.8£3,2.2335/-1.1835/-0.2395,2.02ca/3.15d2/3.923, 4. 1a2c/4.cdd/3.65a,0. 15be/5. 164
2/7.b76,2.835/8.1baa/6.270c, -0.b2c/ . 158d/8.126e,0.01158/d.1c01/7.141b,-0.a05/11.511/9.cfh
,1.c10/£.10de/7.723,-1.22de/11.6c£/9.1706,1.121b/13.59c/7.2245,7.1475/a.164e/-1.2621,4.25
a9/-8.££2/-7.710,5.1a1f/-3.02b0/-58.74a,8.58e7/58.14d2/1.43e, 6.253e/a.02af/2 .248e, 6. 1c3d/d. 1
asa/4.1912,7.8ec/4.1d33/-5.12£4,7.1741/-0.115f/-6.a85,5. 2297/ -6.de4/ -5.4£1,7.257a/ 1. 9b5/ -
Z2.4e0,7.11b4/6.1a47/2.101a,5.921/-2.£d7?/-0.17ca, 4. 1bab6/-5.25de/-2.1£70,4.13fa/-42. 1bcS/-1.
z28d,6.1109/6.0ad/2.23e0,3.1327/8.1f4e/7.013,5.c94/-0.03a7/0.2633, 4. 12ee/~-1.059/-0.ben, 3.
10bd/-9.d75/-0.44f,3.583b/-5.a0b/-2.d25,1.018b/-5.1£20/-0.d05,2.16£d/-4.032e/-2.16%0,4.17a
0/10.0212/3.2357,1.1147/12.5af/-0.4£9,2.1faf/12.9aa/5.194e,5.1570/£.1653/5. 1a5a,3.1495/-a
.26h3/-5.1704,1.2085/-a.2084/-2.22e5,9.cdb/-7.9c2/-4.01f2, 7. aa4/-6.49a/-0.125b, 4.23b5/-7.
196c/1.11df, 4. 19/ -a.138a/2.0384,8.b6e/—a.1£f2c/-3.165c,4.895/-c.1lebs/-2.13a0,a.1547/-5.2
6e6/3. 1bbe, 7.21£0/-6.13fe/5. 10k, 5. 22b5/ =6, 1ac2/ 5. 1££7, 6. 1914/ -5.17fd/3.0e4, 8. 40d/ -a . b18/
4,741,8.02a6/-a.029k0/3.12dd,9. 1bf4/-7.£7e/6.952,8.2458/-5. 1lade/7.47d,7.1£91/-4.19a3/6.174
e, 7.166c/-6.01b3/5.51b.8.1fe?/-58.23ce/4.208,6.9b6/-9.,15d4/4.0352.9.1377/-a.20cd/9.1937.5.

Mo 48854 chars 48869 bytes 16 lines Ln: 7 Col:76 Sel:0(0 bytes) in 0 ranges LINE AMEL INS

If this new AWD file, with the reference to the JPG file removed, is embedded and
loaded, the AwData class will not try to load any external image files. This in turn
stops an exception from being thrown.

AWD—Loading an external file

When loading an external AWD file, we don't have to worry about the materials like
we did with the embedded AWD file. We simply use the AwData class to load and
apply any textures that are referenced within the AWD file.

package

{

import away3d.loaders.AWData;
import away3d.loaders.Loader3D;

public class AWDExternalDemo extends Away3DTemplate

{

[196]

Chapter 6

public function AWDExternalDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;
Make sure you add the slash to the URL.

var monsterMesh:Loader3D = AWData.load("./monster.awd",

{

z: 200

!
)i
scene.addChild (monsterMesh) ;

}
}
}

KMZ

The KMZ format is used by Google Sketch-Up. The Kmz class from the away3d.
loaders package should load KMZ files, but due to a bug in Away3D version 3.6
this class cannot be used. Referencing the kmz class in any way will lead to the
following error:

VerifyError: Error #1053: Illegal override of Kmz in away3d.loaders.Kmz.

More information on this bug can be found at http://code.google.com/p/
away3d/issues/detail?id=60&can=1&g=kmz.

ASE—Loading an embedded file

The ASE file format is used by 3ds Max. It uses ASCII characters (unlike the binary
3DS format), meaning it is readable if opened using a regular text editor.

Working with an embedded ASE file is quite straightforward. In fact, when loading
embedded model files in the other 3D model formats we need to be aware of how
textures that are referenced in the file are loaded from external files by default. But
with the aAse class, there are no workarounds or special init object parameters to deal
with when loading an embedded model file.

package

{
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;

[197]

Models and Animations

import away3d.loaders.Ase;
import away3d.materials.BitmapMaterial;

public class ASEEmbeddedDemo extends Away3DTemplate
[Embed (source="monster.ase", mimeType="application/octet-stream")]
protected var MonsterModel:Class;
[Embed (source="monster.jpg")]
protected var MonsterTexture:Class;

public function ASEEmbeddedDemo ()

{

super () ;

protected override function initScene () :void
{
super.initScene () ;
var modelMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (MonsterTexture)) ;
var monsterMesh:Mesh =
Ase.parse (Cast.bytearray (MonsterModel) ,

{

)i
monsterMesh.material = modelMaterial;
scene.addChild (monsterMesh) ;

Z: 50

ASE—Loading an external file

Loading an external ASE file is done in two steps. The first is to load the file in the
usual way using the Ase load () function.

package
{
import away3d.core.base.Mesh;
import away3d.events.Loader3DEvent;
import away3d.loaders.Ase;
import away3d.loaders.Loader3D;
import away3d.materials.BitmapFileMaterial;

[198]

Chapter 6

public class ASEExternalDemo extends Away3DTemplate

{

public function ASEExternalDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene() ;

Make sure you add the slash to the URL.

var monsterMesh:Loader3D = Ase.load("./monster.ase",

The second step is to manually load the materials. The Ase class does not

parse any material information from the ASE file format. To accommodate

this, the onLoadsSuccess () function has been registered through the Loader3p
addonSuccess () function to be called when the Loader3DEvent . LOAD SUCCESS
event is dispatched.

monsterMesh.addOnSuccess (onLoadSuccess) ;
scene.addChild (monsterMesh) ;

}

In the onLoadSuccess () function, we use the BitmapFileMaterial to load an
external texture and apply it to the 3D object.

protected function onLoadSuccess (event:Loader3DEvent) :void

{

(event .loader.handle as Mesh) .material =
new BitmapFileMaterial ("monster.jpg") ;

[199]

Models and Animations

OBJ—Loading an embedded file

The OB] file format was first developed by Wavefront Technologies for its Advanced
Visualizer animation package, which has since been incorporated into the Maya
3D modeling application. It is an ASCII-based format, meaning it can be read with

aregular text editor. OB]J files are usually partnered with a second MTL file that
defines the materials.

package
{
import away3d.core.base.Face;
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;
import away3d.loaders.Obj;
import away3d.materials.BitmapMaterial;

public class OBJEmbeddedDemo extends Away3DTemplate
{

[Embed (source="monster.obj", mimeType="application/octet-stream")]
protected var MonsterModel:Class;

[Embed (source="monster.jpg")]

protected var MonsterTexture:Class;

public function OBJEmbeddedDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;
var modelMaterial:BitmapMaterial =

new BitmapMaterial (Cast.bitmap (MonsterTexture)) ;
var monsterMesh:Mesh =

Obj.parse (Cast.bytearray (MonsterModel) ,

{

z: 200,

Setting the useMt1 init object parameter to false is important when using an
embedded OB] model file. If useMt1 is set to true, which it is by default, an attempt
will be made to load the MTL file that usually accompanies an OB] model file.
Attempting to load a nonexistent MTL file may result in an error being displayed
within the scene (like in the following screenshot), or an exception may be thrown.

useMtl: false

}

) as Mesh;

[200]

Chapter 6

Due to the way the 0bj class constructs the 3D object from the embedded OB] file,
we need to set the material that is applied to each Face in the 3D object rather than
assigning a material to the Mesh material property.

for each (var face:Face in monsterMesh.faces)
face.material = modelMaterial;
scene.addChild (monsterMesh) ;

}
}
}

The following image shows an example of the error you may see if the useMt1 init
object parameter is not set to false.

File Wiews Control

Help

OBJ—Loading an external file

When loading an external OB] file, the 0bj class will attempt to load the materials
defined in the MTL class with the same name as the OB]J class. Otherwise, loading
an external OB] file is quite straightforward.

[201]

Models and Animations

The 0Obj class will not parse the MTL file properly if its lines are
M prefixed with whitespace characters like spaces or tabs. Some
Q exporters, like the one included with 3ds Max, will add these
whitespace characters to the MTL file. You can manually remove
them using a regular text editor.

package

{
import away3d.loaders.Loader3D;
import away3d.loaders.Obj;

public class OBJExternalDemo extends Away3DTemplate

{

public function OBJExternalDemo ()

{

super () ;

}

protected override function initScene() :void

{

super.initScene () ;

Make sure you add the slash to the URL.

var monsterMesh:Loader3D = Obj.load("./monster.obj",

{

z: 200
}
)i
scene.addChild (monsterMesh) ;

}
}
}

The problem with init and Init objects

We have used the term "init object" quite a bit throughout the book. These init objects
are usually created using object literal notation. While they are related to the Init
class, they are not the same thing.

Instances of the Init class maintain a reference to an init object, and provide a
number of functions that can be used to easily read the properties of the init object.
So, an init object (notice the lower case "i") contains a number of properties that
define the initial values or settings to be applied to an object. An Init object (with
the uppercase "I") is an instance of the Init class that provides a convenient way
to read the properties of an init object.

[202]

Chapter 6

So far we have not had to use the 1Init class directly, but understanding how it
works allows us to understand some of the differences between how materials are
applied to 3D objects loaded from embedded files and how they were applied to

the primitive 3D objects created in Chapter 2, Creating and Displaying Primitives. You
may have noticed that when using model loading classes (like the Md2 class) we have
applied the material directly via the Mesh material property, whereas in Chapter 2,
Creating and Displaying Primitives, we applied materials of the primitive 3D objects
using the material init object parameter.

To explain this difference, we first need to know how the Init class works. Let's take
alook at the getMaterial () function provided by the Init class.

public function getMaterial (name:String) :Material

{
if (init == null)
return null;

if (!init.hasOwnProperty (name))
return null;

var result:Material = Cast.material (init [name]) ;
delete init [name];

return result;

}

The logic used by the getMaterial () function is similar to the other "get" functions
provided by the Init class. It will first check for the existence of the requested
property in the init object, referenced by the init property. If it does not exist, null
is returned. If it does exist, the property is cast to a Material. Before the material is
returned, the init object property that was just accessed is deleted.

Because the init object property is deleted once it is read, calls to the Init class "get"
functions in effect consume the requested property. This means if two objects share
the same init object, the first one to read a specific init object property (via an Init
object) is the only one to get the value assigned to that property. This consumption of
init object properties is important when you see how many classes an init object will
pass through. The following list shows a selection of the classes and functions the init
object supplied to the Md2 parse () function will pass through:

e Md2.parse
e TLoader3D.parse

e LoaderCube constructor

[203]

Models and Animations

e Loader3D constructor

e ObjectContainer3D constructor
e Mesh constructor

e Object3D constructor

e Md2 constructor

e AbstractParser constructor and more...

As you can see, the init object you supply to the Md2 parse () function changes
hands quite a bit, and each time it does there is a chance that a property of that init
object will be consumed. This is exactly what happens to the material init object
property. It is consumed in step 6, where it is used to define the material that will
be applied to the cube primitive that is used as a place holder while the MD2 file is
downloaded and parsed. The material property is then requested a second time
in step 9, where it is used to define the material that is applied to the loaded 3D
object. Of course, by this time the material property has been consumed and is
no longer available.

The problem here is that a number of Away3D classes request the same property
from an init object, and the order in which they consume these properties is not
immediately obvious. In the case of the Md2 class, the material init object property is
consumed by the Mesh constructor to be applied to the place holder cube primitive,
and not the AbstractParser constructor, which would apply the material to the
loaded 3D object (which is the effect that you may expect when providing the
material init object parameter).

The workaround to this issue is to simply assign the value to the specified property
directly. This is why we have assigned the required material to the Mesh material
property directly in a number of the examples presented in this chapter.

Converting a loaded model to an ActionScript
class

The Mesh object has a function called asAs3Class (), which can be used to dump
a 3D object to an ActionScript class.

The following initScene () function could be used in the MD2EmbeddedDemo from the
MD?2 — Embedded File example. It creates a new Mesh object from a MD2 file, and then
uses the trace function to output the string returned by the asas3class () function.

protected override function initScene () :void

{

super.initScene () ;

[204]

Chapter 6

md2Mesh = Md2.parse (Cast.bytearray (MD2Model)) ;
trace (md2Mesh.asAS3Class ("Ogre", "", true, true));

}

" The asAS3Class () function can output many megabytes of data
~ for complex models. You may find a tool like Vizzy Flash Tracer
Q (http://code.google.com/p/flash-tracer/) easier to use than
your authoring tool when dealing with such large trace dumps.

Converting 3D models into an ActionScript class offers some degree of copy
protection by making it harder for your models to be extracted and used by a third
party. And because the resulting ActionScript class only includes the data required
by Away3D, it can result in smaller model files by stripping some of the extraneous
data present in some 3D file formats (although this is not always the case —see
Chapter 13, Performance Tips, for a more detailed look at the benefits of saving

3D objects as ActionScript classes).

in Away3D version 3.6. This functionality is expected to be included in

M Animations are not exported when using the asAS3Class () function
Q later versions of Away3D.

Alternatively, you can use a tool like Prefab to import a 3D model file and then
export an AS class. Prefab is a free tool that runs on the Adobe AIR platform, and
can be downloaded from http://www.closier.nl/prefab/.

%5 prefab

File Render Export Geometry Windows Updates

Ambient: 1 Diffuse:| 05 {

Specular: 1 - FallOff:

Brightness: : Radius: m

_x;[ﬁﬁ?ﬁi + Show light: o

yi Fr ; Show all Lights: &
z[o 10:[pointlight_o

h h |
L, |
| b |
LookAt Mesh Origin = Selection only. L ‘

Scene 0bj Scale I n WV editor t= | Ambient: CEIE) vox width: (BB (¥ fastrenderer | ok <k @, h B A

Camera distance IS Explore 4| Bl BB vox heigh: BB T Raer
-

Save all b

[205]

Models and Animations

The following instructions show you how to convert a 3D model file into an
ActionScript class using Prefab:

1. Click File | Import 3D model.
2. Select the 3D model file you wish to import and click on the OK button.

3. At this point, you will see a Geometry integrity report window. Click on the
Close button to return to the main window.

4. Select the imported model by clicking on it. When selected, the model should
be surrounded by a blue box.

Click Export | Export to Away3D AS3 class.
Select the Selected Object and Only Geometry options.
Type in a name for the class in the ClassName textbox.

*® N oG

You can leave the Package textbox empty, or you can optionally specify the
package that the class should reside in.

9. C(lick on the Save File button.

10. Select a location to save the file (you will most likely want to save it in the
same location as other source code files) and click on the Save button.

M These instructions are valid for Prefab version 1.336. Prefab is
Q an active project that is updated on a regular basis, and so some
of these steps may change in later versions.

Summary

While it is possible to create simple 3D objects manually or through the primitive
3D objects supplied with Away3D, it is very common to display 3D models created
and exported from 3D authoring applications. We have seen how these 3D models
can be exported from a number of 3D modeling applications, such as 3ds Max,
Blender, Milkshape, and Sketch-Up.

We have covered the differences in embedding the 3D model files directly into the
final SWF file and loading them as external files. Sample applications were presented
that demonstrate how the different formats supported by Away3D, which include
3DS, AWD, MD2, Collada, OBJ, ASE, and ActionScript, can be loaded, parsed,

and displayed.

Finally, we saw how we can use the functionality in the Mesh class to convert
a loaded 3D object into an ActionScript class, which provides a degree of copy
protection and optimization.

In the next chapter, we will take a look at the various types of cameras and lenses
available in Away3D.

[206]

Cameras

In Chapter 1, Building Your First Away3D Application, we briefly touched on the
camera3D class. Just like a real life camera, the Camera3D class has a number of
properties that can be modified, such as focus, zoom, and field of view. In this
chapter, we will see how these properties affect the camera, and how they can be
used in conjunction with the various lens classes that are included with Away3D.

Away3D also includes a number of additional camera classes that provide an easy
way to trail a moving 3D object, always keep a particular 3D object in view, or
to view a 3D object from a variety of different angles.

In this chapter, we will cover the following topics:

e The properties of a camera
e The different lens classes that can be used by the camera

e The different camera classes that are available

Cameras

The properties of a camera

In photography, adjusting the focal length of a camera lens modifies its angle of
view (also known as field of view, or FOV). You can see how this works in the
following diagram:

Film or light

Field Of View
sensor

<+“—>

Focal length
|><Enaller Field Of View
«— >

Longer focal length

Larger Field Of view

<+—>
Shorter focal length

As you can see, a short focal length increases the cameras FOV, while a long focal
length decreases it. The greater the FOV, the more of a scene is captured by the
camera. Because the physical size of a photograph does not change, this necessarily
means that each object in the scene will appear smaller on the photograph. As the
FOV decreases, so too does the area of a scene that is captured by the camera, which
in turn increases the size of the objects that appear in the photograph.

The camera3D class includes a property called focus, which has similar properties to
the focal length. As the focus property is increased, the FOV (represented by the fov
property) decreases, reducing the scene's visible area, and enlarging the size on the
screen of those 3D objects that are visible. Conversely, decreasing the focus property
will increase the FOV, which will make more of the scene visible, thus reducing the
size on the screen of any visible 3D objects.

[208]

Chapter 7

The camera3D class also includes a property called zoom. As you would imagine,
increasing the zoom property will "zoom-in" the camera. Zooming in is achieved by
reducing the FOV, and this is exactly how the zoom property works in the camera3p
class too: increasing the zoom property will decrease the camera's FOV, while
decreasing the zoom property will increase the camera's FOV.

The fov property itself can be modified directly, and doing so will also modify the
zoom property accordingly that is, increasing the fov property will decrease the
zoom property, and decreasing the fov property will increase the zoom property.

The zoom or focus properties can be used interchangeably
W\l when using the PerspectiveLens, OrthogonalLens, and
~ SphericalLens classes (discussed in the following Camera lenses
Q section). The ZoomFocusLens class will render the scene differently
depending on the values assigned to the zoom or focus properties,
although generally speaking the variation is minor.

The cameraPropertiesDemo application, available on the Packt website, allows you
to modify the focus, zoom, and fov properties of a camera viewing a scene filled
with cubes. This allows you to see the relationship between the three properties

on a live Camera3D object.

Camera lenses

Just like a real camera, the Away3D camera classes can view the scene through a
variety of different lenses. There are four lens classes available in Away3D, each
from the away3d. cameras. lenses package:

e ZoomFocusLens

e DPerspectivelLens

e OrthogonallLens

e Sphericallens

Applying an instance of these lens classes to a camera object is as simple as assigning
it to the camera3D lens property, like so:

camera.lens = new SphericallLens() ;

[209]

Cameras

ZoomFocusLens and PerspectiveLens
classes

The zZoomFocusLens class is the default class that is assigned to the Camera3D lens
property. This lens will render a scene much like your own eyes perceive the real
world. While the ZoomFocusLens class will render the scene appropriately in most
situations, the class itself is a legacy from earlier code. The PerspectiveLens class
will project the scene in a way that is more common amongst modern 3D authoring
applications. The difference between the two classes is subtle, but as we will see

in Chapter 8, Mouse Interactivity, there are occasions where it is necessary to use the
PerspectiveLens class.

The following screenshot shows you how a scene will appear when viewed with the
ZoomFocusLens and PerspectiveLens classes.

E Ldobe Flash P.la},fer_-llﬂ El

File Hie_uu Qonltrol H_el_p

SphericalLens class

The projection method used by the FocuszoomLens and PerspectiveLens classes
results in a more distorted view as the FOV increases. You can see this in the following
screenshot, which shows a scene viewed through a PerspectiveLens with a large
FOV. Notice how the cubes shown at the bottom of the screen have been skewed.

[210]

Chapter 7

.Adobe Flash Playeri-ﬂ EI@

Eile Miew Contral Help

The sphericalLens class can be used for situations like this. This class is used to
replicate a wide-angle lens, sometimes referred to as a fish-eye lens. It views the
scene as if it were being reflected in the surface of a glass sphere, and it avoids the
distortion as shown in the following screenshot:

' B2 Adobe Flash Player 10 EI@

Eile Miew Control Help

[211]

Cameras

OrthogonallLens class

Part of the way the lens classes ZoomFocusLens, PerspectiveLens, and
SphericalLens create a 3D perspective is by scaling down 3D objects as they
increase in distance from the camera. This effect is similar to how our own eyes
perceive the world, but there are situations where this effect is not desirable.
Isometric projection can be used as an alternative to render 3D objects with a
consistent size and maintain the spacing between parallel lines. Isometric projection
is used by a number of real-time strategy and adventure games, and also in
Computer Aided Design (CAD).

The orthogonalLens class is used in Away3D to render an isometric view. As you
can see in the following screenshot, the size of the cubes remain consistent despite
their distance from the camera, and all of their parallel edges remain parallel when
rendered to the screen.

- Adabe Flash P.layerl.ﬂ EI@

File Miew Control Help

-

Camera classes

Away3D includes a number of camera classes. We have already used the Camera3D
class, which is referenced by the Away3DTemplate class introduced in Chapter

1, Building Your First Away3D Application. The Camera3D class can be positioned
and transformed within the scene, but it does not have the ability to easily track,
follow, or slide around a 3D object. Instead, this functionality is provided by the
TargetCamera3D, HoverCamera3D, and SpringCam classes.

[212]

Chapter 7

To demonstrate these additional camera classes we will create an application called
cameraDemo. This application will allow us to use these cameras to view a sphere
primitive that can be moved around within the scene in response to keyboard input.

package

{
The camera classes are found in the away3d. cameras package.

import away3d.cameras.HoverCamera3D;
import away3d.cameras.SpringCam;

import away3d.cameras.TargetCamera3D;
import away3d.core.clip.FrustumClipping;
import away3d.core.render.Renderer;
import away3d.core.utils.Cast;

import away3d.materials.BitmapMaterial;
import away3d.primitives.Plane;

import away3d.primitives.Sphere;

import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.events.MouseEvent;

public class CameraDemo extends Away3DTemplate

{

This embedded texture file will be applied to the ground (represented by a plane
primitive) to provide a reference point for the moving sphere.

[Embed (source="checkerboard. jpg")]
protected var CheckerBoardTexture:Class;

The sphere property will reference the sphere primitive that will be added to
the scene.

protected var sphere:Sphere;

The three cameras demonstrated by this application (the hover camera, target camera
and spring camera) are each referenced by their own similarly named property.

protected var hoverCamera:HoverCamera3D;
protected var springCamera:SpringCam;
protected var targetCamera:TargetCameralD;

[213]

Cameras

The l1astStagex and lastStageY properties are used to store the position of the
mouse during the last frame. This will allow us to find out how far the mouse has
moved in any given frame.

protected var lastStageX:Number;
protected var lastStageY:Number;

The mouseButtonDown property will be set to t rue when the mouse button has been
pressed, and false when it has been released.

protected var mouseButtonDown:Boolean;

The spring and target cameras are best demonstrated tracking a moving target. These
four properties will be true when the corresponding arrow keys on the keyboard are
pressed, and false when they are released. That in turn allows us to move and turn
the sphere by a small amount every frame in response to keyboard input.

protected var moveForward:Boolean;
protected var moveBackward:Boolean;
protected var turnLeft:Boolean;
protected var turnRight:Boolean;

public function CameraDemo ()

{

super () ;

protected override function initEngine() :void

{

super.initEngine () ;

In this demo, the default renderer can introduce some z-sorting issues between the
sphere and the ground plane. Using the Quadtree renderer (which was covered in
Chapter 4, Z-Sorting) provides a simple fix for this problem.

view.renderer = Renderer.CORRECT Z ORDER;

We can also run into some trouble where the ground plane is culled when it is
still visible on the screen. Assigning a new FrustumClipping object to the view's

clipping property ensures that only those parts of the ground plane that are not
visible are culled.

view.clipping = new FrustumClipping() ;

}

[214]

Chapter 7

The initScene () function is used to create a sphere primitive, a plane primitive
to represent the ground, and add both 3D objects to the scene. A checkerboard
material is applied to the plane primitive, which gives us a point of reference

as the sphere primitive is moved around the scene.

protected override function initScene() :void
{
super.initScene () ;
sphere = new Sphere (
{
radius: 10,
y: 10
}
) ;
scene.addChild (sphere) ;

var plane:Plane = new Plane(
{
material: new BitmapMaterial (Cast.bitmap (CheckerBoardTexture)),
width: 500,
height: 500
}
) ;
scene.addChild (plane) ;

The addHovercCamera () function is then called, configuring the hover camera as the
initial camera.

addHoverCamera () ;

}

The initListeners () function contains code to register functions against several
different events. For this demo, we need to listen for when keys on the keyboard are
pressed (KeyboardEvent .KEY DOWN) and released (KeyboardEvent .KEY_UP), when
the mouse button is pressed (MouseEvent . MOUSE_DOWN) and released (MouseEvent .
MOUSE_UP), and also for when the mouse is moved (MouseEvent . MOUSE_MOVE).

protected override function initListeners() :void
super.initListeners () ;
stage.addEventListener (
MouseEvent . MOUSE_DOWN,
onMouseDown

)i

[215]

Cameras

stage.addEventListener (
MouseEvent .MOUSE_UP,
onMouseUp

)

stage.addEventListener (
MouseEvent .MOUSE_MOVE,
onMouseMove

)

stage.addEventListener (
KeyboardEvent .KEY DOWN,
onKeyDown

)

stage.addEventListener (
KeyboardEvent .KEY UP,
onKeyUp

)

protected override function onEnterFrame (event:Event) :void

{

super.onkEnterFrame (event) ;

If the hover camera is the current camera, we need to call its hover () function. This
will update the position and orientation of the hover camera, moving it towards the
target angles that we have given it in response to the movement of the mouse.

if (hoverCamera != null) hoverCamera.hover() ;

Likewise if the spring camera is the current camera, we need to access the view
property. This does much the same job as the hover () function on the hover camera,
and will move the camera in response to the movement of the target 3D object it

is following.

if (springCamera != null) springCamera.view;

Depending on which arrow keys are currently pressed on the keyboard, the sphere
will be moved using the moveForward () and moveBackward () functions, and
rotated using the yaw () function.

if (moveForward) sphere.moveForward(5) ;

else if (moveBackward) sphere.moveBackward(5) ;
if (turnLeft) sphere.yaw(-5);

else if (turnRight) sphere.yaw(5) ;

[216]

Chapter 7

When the mouse button has been pressed down, the MouseEvent . MOUSE DOWN event
will be dispatched, and the onMouseDown () function is called.

protected function onMouseDown (event:MouseEvent) :void

{

We set the mouseBut tonDown property to true to indicate that the mouse button is
currently pressed.

mouseButtonDown = true;

We store the current position of the mouse in the 1astStagex and lastStageY
properties, which will allow us to calculate how far the mouse has moved
next frame.

lastStageX = event.stageX;
lastStageY = event.stageyY;

}

When the mouse button is released the MouseEvent . MOUSE_UP event is dispatched,
and the onMouseUp () function is called.

protected function onMouseUp (event :MouseEvent) :void

{

The mouseButtonDown property is set to false to indicate that the mouse button has
been released.

mouseButtonDown = false;

}

When a key is pressed on the keyboard, the KeyboardEvent . KEY DOWN event
is dispatched, and the onkeyDown () function is called. It is here that we set the
moveForward,moveBackward,turnLeft,and,turnRightFmoperﬁesh)true,
if their corresponding arrow key was pressed.

protected function onKeyDown (event :KeyboardEvent) :void

{

switch (event.keyCode)
{
case 38: // UP ARROW
moveForward = true;
break;
case 40: // DOWN ARROW
moveBackward = true;
break;
case 37: // LEFT ARROW

[217]

Cameras

turnLeft = true;
break;

case 39: // RIGHT ARROW
turnRight = true;
break;

}

When a key is released on the keyboard, the KeyboardEvent . KEY_UP event

is dispatched, and the onKeyUp () function is called. It is here that we set the
moveForward,moveBackward,turnLeft,and.turnRightfﬂoperﬁesh)false,
if their corresponding arrow key was released.

protected function onKeyUp (event:KeyboardEvent) :void

{

switch (event.keyCode)

{

case 38: // UP ARROW
moveForward = false;
break;

case 40: // DOWN ARROW
moveBackward = false;
break;

case 37: // LEFT ARROW
turnLeft = false;
break;

case 39: // RIGHT ARROW
turnRight = false;
break;

We also watch for the 1, 2, or 3 keys on the keyboard being released. In response
to these keys being released, we call the addHoverCamera (), addSpringCamera (),
or addTargetCamera () functions. Each of these functions initializes a new type of
camera through which the scene is viewed.

case 49: // 1

addHoverCamera () ;
break;

case 50: // 2
addSpringCamera () ;
break;

case 51: // 3
addTargetCamera() ;
break;

[218]

Chapter 7

The remaining code deals with the creation and updating of the three different
camera classes.

Target camera

The target camera acts just like the regular camera, with the exception that it will
orient itself to always keep a particular 3D object in the centre of its view. Releasing
the 3 key on the keyboard will cause the addTargetCamera () function to be called,
which will create and activate the target camera.

protected function addTargetCamera () :void

{

When a new camera is added to the scene, the references to the other two cameras
are set tonull.

hoverCamera = null;
springCamera = null;

The target camera is represented by the TargetCamera3D class. In the following
code, we create a new instance of the TargetCamera3D class, supplying an init object
to the constructor that defines the target 3D object for the camera, as well as placing
the camera 100 units up along the Y-axis, giving it a global position of (0, 100, 0).

The target init object parameter is the only one recognized by the TargetCamera3D
class. However, like all cameras, the TargetCamera3D class extends the Camera3D
class, and init object parameters for the Camera3D class can also be passed to the
TargetCamera3D constructor.

targetCamera = new TargetCamera3D (

{

target: sphere,
y: 100
}
) ;

To view the scene through the new camera, we assign it to the view3D
camera property.

view.camera = targetCamera;

[219]

Cameras

The following table lists the init object parameters recognized by the
TargetCamera3D class:

Parameter Data Type Default Value Description

target Object3D new Object3D() Defines the 3D object targeted
by the camera.

Hover camera

Like the target camera, the hover camera always looks at a target 3D object, but it
can also move around it as if it were sliding across the surface of an ellipsoid that
surrounds the target. This provides an easy way to view a 3D object from all angles,
and by responding to the movement of the mouse can be used to create a natural
interface to manipulate how the scene is viewed.

protected function addHoverCamera () :void
{

springCamera = null;

targetCamera = null;

The hover camera is represented by the HovercCamera3D class. Here, we create a

new instance of the class, and supply an init object to define the target 3D object that
the camera will always look at, the distance that the camera will be placed from the
3D object, the minimum tilt angle that the camera will be able to use, and the initial
target tilt angle. The table below lists all the init object parameters that can be passed
to the HoverCamera3D constructor.

hoverCamera = new HoverCamera3D (
{
target: sphere,
distance: 100,
mintiltangle: 5,
tiltAngle: 45
}
)i

view.camera = hoverCamera;

[220]

Chapter 7

In this application, the position of the hover camera is controlled using the mouse.
We have already seen that the mouseButtonDown property is set to true or false
by the onMouseDown () and onMouseUp () functions in response to the mouse button
being pressed or released. Now, when the onMouseMove () function is called in
response to the MouseEvent . MOUSE_MOVE event, we can modify the position of the
hover camera.

protected function onMouseMove (event:MouseEvent) :void

{

If the mouseButtonDown property is set to true, indicating the mouse button is being
held down, and the hovercamera property is not null, indicating that the hover
camera is the current camera, we will use the movement of the mouse to modify

the angle of the hover camera.

if (mouseButtonDown && hoverCamera != null)

{

The angle to pan (which is rotation around the Y-axis) the hover camera by is
calculated using the distance the mouse has moved horizontally across the screen.
By subtracting the current horizontal position of the mouse (event . stageXx) from the
horizontal position of the mouse from the last frame (1astStagex), we can work out
how far the mouse has moved during the last frame.

var pan:int = (event.stageX - lastStageX);

The angle to tilt (which is rotation around the X-axis) the hover camera by is
calculated in a similar way, only this time we use the current and last vertical
position of the mouse to find its vertical movement over the last frame.

var tilt:int = (event.stageY - lastStagey);

The hover camera has two properties that define how it should be positioned
around the target 3D object. The first is panangle. This property defines the desired
angle around the Y-axis that the hover camera should have. The second property,
tiltAngle, defines the desired angle around the X-axis that the camera should have.

Assigning a value to either of these properties will not immediately jump the camera
to a new position. Instead, the camera will incrementally update its position and
orientation with each call to the hover () function. So by calling the hover () function
once each frame in the onEnterFrame () function, the hover camera will eventually
reach the desired position specified by the panAngle and tiltAngle properties.

hoverCamera.panAngle += pan;
hoverCamera.tiltAngle += tilt;

[221]

Cameras

The position of the mouse is then stored in the 1astStageX and lastStageY

properties.

lastStageX = event.stageX;

lastStageY = event.stageY¥;

}
}

The following table below lists the init object parameters recognized by the
HoverCamera3D class:

Parameter

Data Type

Default
Value

Description

yvfactor

distance

wrapPanAngle

panAngle

tiltAngle

minTiltAngle

maxTiltAngle

steps

Number

Number

Boolean

Number

Number

Number

Number

int

2

800

false

Fractional difference in distance between
the horizontal camera orientation and
vertical camera orientation. Higher
values mean the camera will be placed
further from the target 3D object as the
camera moves above or below it.

The distance from the camera to the
target 3D object when the tiltangle is
zero. The yfactor property can be used
to change this distance with the vertical
movement of the camera.

Defines whether the value of the pan
angle wraps when over 360 degrees or
under 0 degrees.

The desired rotation of the camera
around the Y axis, measured in degrees.

The desired rotation of the camera
around the X axis, measured in degrees.

Minimum bounds for the tiltangle
property.

Maximum bounds for the tiltangle
property.

Fractional step taken each time the hover
function is called. Larger values result

in the camera moving smaller distances
with each call to the hover function.

[222]

Chapter 7

Spring camera

The spring camera, represented by the Springcam class, provides a camera that will
follow a 3D object as it moves around the scene as if it were attached by a spring.

protected function addSpringCamera () :void
hoverCamera = null;
targetCamera = null;

springCamera = new SpringCam() ;
springCamera.target = sphere;
view.camera = springCamera;

}
}
}

The springcCam class is unusual in that its initial properties cannot be specified via
an init object. The constructor will accept an init object, which is passed to the base
Camera3D constructor, but all of the properties specific to the springCam class have
to be set individually once a new SpringCam object has been created. The following
table lists all of the public properties exposed by the Springcam class:

Parameter Data Type Default Value Description

target Object3D null The target 3D object that the
camera should follow. If this
property is null, the camera
will behave like a standard
Camera3D.

stiffness Number 1 The stiffness of the spring,
which defines how hard it
is to extend. Higher values
for this property mean the
camera will trail the target at
a more fixed distance.

damping Number 4 Defines the internal friction
of the spring, which affects
how quickly the spring will
snap back. Higher values will
reduce how much the camera
will bounce. This value
should be between 1 and 20.

[223]

Cameras

Parameter Data Type Default Value Description

mass Number 40 The mass of the camera.
Higher values will increase
the resistance of the camera
to the pull of the target 3D
object, and give it more
momentum when it is
moving.

positionOffset Vector3D Vector3D(0,5,-50) The resting position of
the camera relative to the
position of the target 3D
object.

lookOffset Vector3D Vector3D (0,2,10) The position relative to the

target 3D object that the
camera should look at.

Summary

Away3D includes a number of classes that can be used to change the way the scene
is viewed and how the camera interacts with the scene.

The lens classes ZoomFocusLens, PerspectiveLens, SphericalLens, and
OrthogonalLens can be used to provide a traditional view of a scene, a wide-angled
view, or a view in which objects don't diminish in size as their distance to the
camera increases.

The HoverCamera3D, SpringCam, and TargetCamera3D classes provide a
convenient way to track moving 3D objects, and also to view them from a
variety of different angles.

We also looked at the various properties of a camera, like fov, zoom, and focus,
which can be modified to increase or restrict the view of the scene that a camera has.

In the next chapter, we will take a look at how the mouse can be used to interact
with the scene, which also provides an example where it is necessary to use the
PerspectiveLens class.

[224]

Mouse Interactivity

Almost every Flash application uses the mouse as the primary means of receiving
input from the user. In Flash you respond to mouse events by registering functions
against specified mouse events. Away3D follows this same principle, and indeed
even uses the same names for mouse events performed on 3D objects as Flash

uses for 2D objects. This means that any developer who has used the mouse in

a traditional 2D Flash application will have no trouble doing the same in an
Away3D application.

We will also see how the position of the mouse on the screen can be projected into a
3D scene, which gives us the ability to create the kind of 3D drag-and-drop interface
that is present in many games.

This chapter will cover the following topics:

e The mouse events supported by Away3D

e The difference between the ROLL. OVER/ROLL_OUT and
MOUSE_OVER/MOUSE_OUT events

¢ Projecting the mouse position into the scene

Away3D mouse events

Away3D has support for a number of mouse events relating to 3D objects. All of the
events are defined as constant strings in the Mouse3DEvent class. These constants are
listed in the following table:

Mouse3DEvent String Constant Description

MOUSE_MOVE Dispatched when the mouse cursor is moved
across the surface of a 3D object.

MOUSE_OVER Dispatched when the mouse cursor moves over
a new 3D object or face with a new material.

Mouse Interactivity

Mouse3DEvent String Constant Description

MOUSE_OUT Dispatched when the mouse is moved off a 3D
object or face.

MOUSE_DOWN Dispatched when a mouse button is pressed
while the cursor is over a 3D object.

MOUSE_UP Dispatched when a mouse button is released
while the cursor is over a 3D object.

ROLL_OVER Dispatched when the mouse cursor moves over
a 3D object belonging to a group that was not
already under the mouse cursor.

ROLL_OUT Dispatched when the mouse cursor moves off
a 3D object.

These events can be dispatched by any object that extends the 0bject3D class,
which includes the scene. The view can also dispatch all of these events except
for Mouse3DEvent .ROLL_OVER and Mouse3DEvent . ROLL_OUT.

If you have ever used the Flash mouse events, the Away3D mouse events should
look familiar as they mirror those that are available in Flash. Responding to them
is also very similar to the way traditional Flash mouse events are handled.

You register an event handler using the addEventHandler () function like so:

myObject3D.addEventHanlder (
MouseEvent3D.MOUSE_MOVE,
onMouseMove

)i
The mouse event handler functions look like the following:

function onMouseMove (event :MouseEvent3D) :void

{

// do something here

}

The MouseEvent3D class (from the away3d.events package) that is passed to the
mouse event handler functions includes some unique properties that allow you to
work with mouse events in 3D. These properties are listed in the following table:

Property Description

screenX The horizontal coordinate at which the event occurred in view
coordinates.

screenY The vertical coordinate at which the event occurred in view coordinates.

screenZz The depth coordinate at which the event occurred in view coordinates.

[226]

Chapter 8

Property Description

sceneX The x coordinate at which the event occurred in global scene
coordinates.

sceneY The y coordinate at which the event occurred in global scene
coordinates.

sceneZz The z coordinate at which the event occurred in global scene
coordinates.

view The view object inside which the event took place.

object The 3D object inside which the event took place.

elementVvo The 3D element inside which the event took place.

material The material of the 3D element inside which the event took place.

uv The UV coordinates inside the 3D element where the event took place.

ctrlKey Indicates whether the Control key is active (true) or inactive (false).

shiftKey Indicates whether the Shift key is active (true) or inactive (false).

The difference between ROLL_OVER/
ROLL_OUT and MOUSE_OVER/
MOUSE_OUT

Away3D supports the Mouse3DEvent .ROLL_OVER / Mouse3DEvent .ROLL_OUT and
Mouse3DEvent .MOUSE_OVER / Mouse3DEvent .MOUSE_OUT pair of events. While both
pairs of events are triggered when the mouse is moved over an object and then back
off, there is a subtle difference between when they are dispatched.

Take the following application. It creates two overlapping spheres, with each added
to a container, and uses the trace () function to notify us when the Mouse3DEvent .
ROLL_OVER, Mouse3DEvent .ROLL_OUT, Mouse3DEvent . MOUSE_OVER and
Mouse3DEvent .MOUSE_OUT events are dispatched by the container.

package

{
import away3d.containers.ObjectContainer3D;
import away3d.events.MouseEvent3D;
import away3d.materials.WireColorMaterial;
import away3d.materials.WireframeMaterial;
import away3d.primitives.Sphere;

public class MouseRollMoveEventDemo extends Away3DTemplate

{

[227]

Mouse Interactivity

public function MouseRollMoveEventDemo ()

{

super () ;

}

In the initScene () function we create two spheres that are separated by 100 units
along the X-axis. Since these spheres have a default radius of 100 units they
will overlap.

protected override function initScene() :void

{

super.initScene () ;
var spherel:Sphere = new Sphere (

{
x: 50,
y: 0,
z: 500
}

)i

var sphere2:Sphere = new Sphere (

{
xXx: -50,
y: 0,
z: 500
}

)i

The two sphere 3D objects are added as children of a ObjectContainer3D object,
which in turn is added as a child of the scene.

var container:0bjectContainer3D =
new ObjectContainer3D (spherel, sphere2);
scene.addChild (container) ;

We setup event listeners for three events: MouseEvent3D.MOUSE_OVER,
MouseEvent3D.MOUSE_OUT, and MouseEvent3D.ROLL_OVER. Three anonymous
functions will be called in response to these events, each using the trace () function
to display a line of text.

container.addEventListener (
MouseEvent3D.MOUSE OVER,
function (event :MouseEvent3D) :void

{

trace ("Container Mouse Over") ;

[228]

Chapter 8

)i

container.addEventListener (
MouseEvent3D.MOUSE OUT,
function (event :MouseEvent3D) :void

{

trace ("Container Mouse Out") ;
)i
container.addEventListener (
MouseEvent3D.ROLL _OVER,
function (event :MouseEvent3D) :void

{

)i

container.addEventListener (
MouseEvent3D.ROLL OUT,
function (event :MouseEvent3D) :void

{

trace ("Container Roll Over") ;

trace ("Container Roll Out") ;

}

With the application running, the mouse is moved from the empty space
surrounding the two spheres onto the one on the left, like in the following image:

[229]

Mouse Interactivity

This produces the following output:

e Container Mouse Over
e Container Roll Over

Since both the Mouse3DEvent .ROLL_OVER and Mouse3DEvent . MOUSE_OVER events
are triggered when the cursor is moved over a 3D object, you would expect to see
this output.

Now the mouse cursor is moved from the left sphere to the right sphere.

This second movement produces the following output:

e Container Mouse Out
e Container Mouse Over

When the mouse is moved off the left sphere the Mouse3DEvent . MOUSE_OUT event
was dispatched. This event then bubbled up to the parent container. Because the
two spheres are overlapping, when the mouse cursor moved out of the left

sphere, it immediately moved over onto the right sphere. This dispatched the
Mouse3DEvent .MOUSE_OVER event, which again bubbled up to the parent container.

During this movement the cursor may have moved from one of the containers'

child 3D object to the next, but it never passed over empty space in between. In

other words, the mouse never moved out of the container. Herein lies the big
difference between the two pairs of events. While the Mouse3DEvent . MOUSE_OVER
and Mouse3DEvent . MOUSE_OUT events have bubbled up from the children of the
container as the mouse moves over them individually, the Mouse3DEvent . ROLL_OVER
and Mouse3DEvent .ROLL_OUT events will only trigger when the mouse moves over
and out of all of the children.

[230]

Chapter 8

Finally, the mouse moves off the right sphere and back over empty space.

E:S

This final movement produces the following output:
Container Mouse Out
Container Roll Out

The Mouse3DEvent . MOUSE_OUT event is triggered because the mouse has moved out
of the right sphere. The Mouse3DEvent .ROLL_OUT event is also triggered because the
mouse has moved out of all the children contained in the container.

So the Mouse3DEvent .ROLL_OVER event will be dispatched when the mouse moves
over any of a container's children, and then the Mouse3DEvent .ROLL_0OUT event will
be dispatched when the mouse moves off all of the children. On the other hand, the
Mouse3DEvent .MOUSE_OVER and Mouse3DEvent . MOUSE_OUT events will be triggered
when the mouse moves over and out of each of the individual children.

Projecting the mouse position into
the scene

As we have seen, responding to mouse events from 3D objects in Away3D is very
easy. We simply specify that a function be called in response to the various events
defined in the Mouse3DEvent class, using the same addEventListener () function
that is used in regular 2D Flash applications.

[231]

Mouse Interactivity

In addition to responding to events in this way, Away3D also allows you to get the
position of the mouse cursor within the scene. This position can then be used to
construct a ray that extends into the scene, and then intersects a plane. The following
image shows how this ray / plane intersection works:

Screen

Aray that originates from the

camera, passes through the
mouse cursor on the screen,
and into the scene.

Intersection point
the ray and

Plane3D

In the following InteractivityDemo application we use this ray to find a point on a
plane, which is then used to reposition a sphere as if it were being dragged around in
the scene. We will also respond to the MouseEvent3D.MOUSE_OVER, MouseEvent3D.
MOUSE_OUT,andNbuseEventBD.MOUSE_DOWNevenm.

package

{
import away3d.cameras.lenses.Perspectivelens;
import away3d.core.base.Object3D;
import away3d.core.geom.Plane3D;
import away3d.core.render.BasicRenderer;
import away3d.core.utils.Cast;
import away3d.events.MouseEvent3D;
import away3d.materials.BitmapMaterial;
import away3d.primitives.Plane;
import away3d.primitives.Sphere;
import flash.geom.Vector3D;

[232]

Chapter 8

import flash.events.Event;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;

public class InteractivityDemo extends Away3DTemplate

{

The checkerboard. jpg texture is embedded. This will be used for the ground plane
3D object.

[Embed (source = "checkerboard.jpg")]
protected var CheckerBoardTexture:Class;

The selectedobject property will reference the sphere 3D object that is
to be moved.

protected var selectedObject:0bject3D;

The spherel and sphere2 properties will reference the two sphere 3D objects that
will be added to the scene.

protected var spherel:Sphere;
protected var sphere2:Sphere;

The groundplane property will reference the plane 3D object that will represent
the ground.

protected var groundPlane:Plane3D;

The throughScreenvector and groundPosition properties will reference the
vectors and positions used later in the class while determining the position of the
mouse cursor on the ground plane 3D object.

protected var throughScreenVector:Vector3D;
protected var groundPosition:Vector3D;

public function InteractivityDemo ()

{

super () ;

protected override function initEngine () :void

{

super.initEngine () ;

[233]

Mouse Interactivity

The functions used to project the position of the mouse cursor into the scene and
onto a plane only work if the camera is using the perspective lens, which was
covered in Chapter 7, Cameras. If you use the default lens, which is provided by

the ZoomFocusLens class, you will find that the mouse cursor's calculated position
within the scene doesn't quite line up with the actual position of the mouse cursor.

camera.lens = new PerspectivelLens () ;

The scene will contain two spheres, each with owncanvas set to true. This is
required to apply filters to the individual 3D objects. Away3D has a feature called
triangle caching (which is explained in more detail in Chapter 13, Performance Tips)
which can cause those 3D objects with ownCanvas set to true to not be sorted
correctly as their relative distances to the camera changes. Setting the forceUpdate
property on the view to true disables triangle caching, and fixes these sorting issues.

1
~ Be aware that disabling triangle caching can have a negative effect
on performance.

To see the effect that triangle caching can have on the sorting of two or more

3D objects with their ownCanvas properties set to true, comment out the following
line of code. You will notice that one sphere is then always drawn in front of the
other, regardless of the position of the spheres within the scene.

view.forceUpdate = true;

}

protected override function initScene() :void

{

super.initScene () ;

The camera is placed 100 units up along the Y-axis, and then tilted down slightly
to get a nice view of the scene.

camera.position = new Vector3D(0, 100, 0);
camera.tilt (20);

A bitmap material is created and then assigned to a plane primitive, which is added
to the scene to represent the ground.

var planeMaterial:BitmapMaterial =
new BitmapMaterial (
Cast .bitmap (CheckerBoardTexture)
)
var plane:Plane = new Plane(

{

[234]

Chapter 8

material: planeMaterial,
segments: 10,
width: 1000,
height: 1000,
y: -15,
z: 250
}
)

By setting the screenzoffset to 1000, we are forcing the plane to be drawn
beneath the two spheres that will be added next. Chapter 4, Z-Sorting, covers the
screenzOf fset property in more detail, as well as a number of additional methods
that can be used to adjust the sorting order of 3D objects within the scene.

plane.screenZOffset = 1000;
scene.addChild (plane) ;

Now we add two sphere primitives to the scene. The ownCanvas init object
parameter is set to true, which will allow us to use the glow filter to highlight the
spheres when they are under the mouse cursor. Chapter 12, Filters and Postprocessing
Effects, shows you how to use filters in more detail.

spherel = new Sphere (
x: -50,
z: 250,
radius: 10,
ownCanvas: true
)i
spherel.ownCanvas = true
scene.addChild (spherel) ;

sphere2 = new Sphere (
x: 50,
z: 250,

radius: 10,

ownCanvas: true

}
)i
scene.addChild (sphere2) ;

[235]

Mouse Interactivity

The P1lane3D class represents an infinite plane. A plane3D object is not a visible object,
and should not to be confused with the plane class, which creates a primitive 3D object.

groundPlane = new Plane3D() ;

The Plane3D class is initialized from a normal vector (pointing straight up along
the Y-axis) and a position that exists anywhere on the plane (the origin, in this case).
This creates a plane that lays flat on the X / Z plane.

groundPlane. fromNormalAndPoint (
new Vector3D(0, 1, 0),
new Vector3D()

)i

protected override function initListeners() :void

{

super.initListeners () ;

The onMouseUp () function is registered against the MouseEvent . MOUSE_UP event
dispatched by the stage. Note that this is a standard Flash mouse event, and is not
dispatched by any Away3D classes.

stage.addEventListener (
MouseEvent .MOUSE UP,
onMouseUp

) ;

The three functions onMouseOver (), onMouseOut (), and onMouseDown ()

are registered with both spheres against the MouseEvent3D.MOUSE_OVER,
MouseEvent3D.MOUSE_OUT, and MouseEvent3D.MOUSE_DOWN events. Unlike the
event dispatched by the stage above, these three events do represent mouse events
within the 3D scene.

spherel.addEventListener (
MouseEvent3D.MOUSE_OVER,
onMouseOver

)i

spherel.addEventListener (
MouseEvent3D.MOUSE_OUT,
onMouseOut

)i

spherel.addEventListener (
MouseEvent3D.MOUSE_DOWN,
onMouseDown

)i

[236]

Chapter 8

sphere2.addEventListener (
MouseEvent3D.MOUSE_OVER,
onMouseOver

)

sphere2.addEventListener (
MouseEvent3D.MOUSE_OUT,
onMouseOut

)

sphere2.addEventListener (
MouseEvent3D.MOUSE_DOWN,
onMouseDown

)i

The addOnMouseMove (), addOnMouseDown (), addOnMouseUp (),

addOnMouseOver (), addOnMouseOut (), addOnRollOver (), and

addonRollout () functions can be used as a shorthand way of linking
K functions to events, like:

spherel.addOnMouseDown (onMouseDown) ;

Likewise, the removeOnMouseMove (), removeOnMouseDown (),

removeOnMouseUp (), removeOnMouseOver (),

removeOnMouseOut (), removeOnRollOver (), and

removeOnRol1lOut () functions can be used to stop a function from

responding to an event.

When the mouse has moved over a sphere, we will highlight it by applying the glow
filter. This is done by adding an instance of the GlowFilter class to an array, which
is then assigned to the filters property defined by the object3D class. Chapter 12,
Filters and Postprocessing Effects, goes into these filters in more detail.

protected function onMouseOver (event:MouseEvent3D) :void

{

event .object.filters = [new GlowFilter()];

}

When the mouse has moved off a sphere the filters are cleared, reverting the sphere
back to its default appearance.

protected function onMouseOut (event:MouseEvent3D) :void

{

event.object.filters = [];

[237]

Mouse Interactivity

When the mouse is clicked on a sphere it is assigned to the selectedObject
property, which effectively selects that sphere as the one to be moved.

protected function onMouseDown (event:MouseEvent3D) :void

{

selectedObject = event.object;

}

When the mouse button is released, the selectedobject property is set to null,
which means that neither of the spheres is selected.

The spheres are deselected in response to the MouseEvent . MOUSE_UP
event dispatched by the stage, and not by the Mouse3DEvent . MOUSE_UP
event dispatched by a 3D object. This was done because releasing the

\l mouse button should deselect the spheres regardless of which Away3D

Ny object was under the cursor when the button was released, if any. It is

Q possible that the selected sphere was not under the mouse cursor when
the mouse button was released, so if we had registered the onMouseUp ()
function to be called in response to the MouseEvent3D.MOUSE_UP event
dispatched by the sphere primitives there is a possibility that the sphere
would not be deselected as expected.

protected function onMouseUp (event :MouseEvent) :void

{

selectedObject = null;

}

In the onEnterFrame () function we will move the selected sphere to a position
under the mouse cursor.

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

If the selectedObject variable is not null, indicating that one of the spheres has
been selected, we will then move the sphere it references so that it is under the
position of the mouse cursor.

if (selectedObject != null)

{

The camera3D unproject () function takes a 2D position on the screen and returns
a vector that points from the camera, through the supplied screen position, and out
into the scene.

[238]

Chapter 8

The position of the mouse needs to be supplied relative to the position of the view on
the stage. Since the view is situated in the middle of the stage, we have to adjust the
mouse coordinates, which are relative to the top-left corner of the stage.

throughScreenvVector = camera.unproject (
stage.mouseX - stage.stageWidth / 2,
stage.mouseY - stage.stageHeight / 2
)

Don't get caught out with the difference between the stage width/

height and stageWidth/stageHeight properties. The width and
N height properties define the area taken up by the children of the stage,
while the stageWidth and stageHeight properties define the actual
dimensions of the stage itself. Although it makes little difference when
the children of the stage (the View3D object in our case) take up all the
available space on the stage, it is worth knowing the difference between
the two sets of measurements.

To turn this direction vector into a position within the scene we add to it the position
of the camera.

throughScreenvVector =
throughScreenvVector.add (camera.position) ;

The Plane3D getIntersectionLineNumbers () function takes two points within the
scene, and returns the point on the plane where the line defined by these two points
intersects it. The position of the camera, and the position of the camera plus the
vector of the mouse cursor coordinates projected out into the scene are supplied

as the two points to define the line.

groundPosition =
groundPlane.getIntersectionLineNumbers (
camera.position,
throughScreenvVector

)i
The selected sphere is then moved to the intersection point.

selectedObject.position = groundPosition;

}
}
}
}

[239]

Mouse Interactivity

When the application is run, you will see that the sphere under the mouse cursor
is highlighted using the glow filter. You can then click and drag the sphere around
within the scene. Although a mouse can only be moved in two dimensions, by
positioning the spheres on a plane we can provide an intuitive way to move the
spheres within a 3D scene.

Summary

Away3D allows you to respond to mouse events on 3D objects using a number of
familiar events like MOUSE_UP, MOUSE_DOWN, MOUSE_OVER, MOUSE_OUT, ROLL_OVER,
and ROLL_oUT. Functions can be registered to be called in response to these events
using the standard addEventListener () function, just as you would do when
responding to mouse input in a traditional 2D Flash application, or using one

of the shorthand functions that are provided by the 0bject3D class.

A sample application was presented that demonstrated the subtle distinction
between the MOUSE_OVER / MOUSE_OUT and ROLL_OVER / ROLL_OUT events.

Finally, we created an application that demonstrated how to listen for and respond
to a number of mouse events. The application also determined the position of the
mouse cursor on a plane within the 3D scene, which allowed us to drag-and-drop
3D objects using the mouse.

In the next chapter, we will look at the sprite classes that are available in Away3D,
which can be used to create some interesting effects that are not possible with more
complex 3D objects.

[240]

Special Effects with Sprites

In Flash programming, a sprite is usually a graphical object that is added to the
stage. All the applications that have been presented in this book have made use of
the Away3DTemplate class from Chapter 1, Building Your First Away3D Application,
which extends the Flash sprite class.

Away3D also includes a number of sprite classes. Despite the similar names, the
Away3D sprite objects are added to a Mesh object and not the Flash stage. Away3D
sprites are used to display a texture on a rectangle that is oriented so it always faces
the camera.

The three Away3D sprite classes that will be covered in this chapter are:

e sprite3D, which displays a material on a rectangle that is always oriented
to face the camera

e DirectionalSprite, which displays one of a selection of materials
depending on the angle at which it is being viewed

e DepthOfFieldSprite, which displays a depth of field effect

Actually, the sprite3D class has already been covered in Chapter 2, Creating
and Displaying Primitives, but in this chapter we will look at a more practical
implementation of the class.

Because they are fairly simple objects, many sprites can be added to the scene

while still maintaining a reasonable frame rate. This allows large numbers of sprites
to be used to simulate particle effects like smoke or explosions. We will look at

how the Stardust particle system library, written by Allen Chou and available from
http://code.google.com/p/stardust-particle-engine, can be integrated

with Away3D to create 3D particle effects.

Special Effects with Sprites

Using the Sprite3D class

The sprite3D class is the base for all the sprite classes included in Away3D. We saw
a basic example of how it can be used in Chapter 2, Creating and Displaying Primitives.
In the sprite3DDemo class, we will look at a more practical example that uses the
Sprite3D class to create a scene of rising balloons.

package
{
import away3d.core.base.Mesh;
import away3d.core.base.Vertex;
import away3d.core.utils.Cast;
import away3d.materials.BitmapMaterial;
import away3d.sprites.Sprite3D;
import flash.geom.Vector3D;

import flash.events.Event;
import flash.utils.getTimer;

[SWF (backgroundColor=0xFFFFFF)]
public class Sprite3DDemo extends Away3DTemplate

{

Each balloon will be represented by one of the three textures. Here we embed a blue,
a green, and an orange image.

[Embed (source = "blueballoon.png")]
protected var BlueBalloon:Class;
[Embed (source = "greenballoon.png")]

protected var GreenBalloon:Class;
[Embed (source = "orangeballoon.png")]
protected var OrangeBalloon:Class;

Each sprite3D object will be added to a collection called balloons.

protected var balloons:Vector.<Sprite3Ds> =
new Vector.<Sprite3Ds>() ;

The NUMBER_OF_BALLOONS constant defines how many balloons will be added
to the scene.

protected static const NUMBER OF BALLOONS:int = 1000;

public function Sprite3DDemo ()

{

super () ;

[242]

Chapter 9

}

protected override function initScene () :void

{

super.initScene() ;

The position of the camera is set to the origin of the scene.

this.camera.position = new Vector3D() ;

The balloonsTextures collection is filled with three BitmapMaterial objects, one
for each of the three embedded textures.

var ballonTextures:Array =
[
new BitmapMaterial (
Cast.bitmap (BlueBalloon),
{smooth: true}
),
new BitmapMaterial (
Cast .bitmap (GreenBalloon) ,
{smooth: true}
),
new BitmapMaterial (
Cast.bitmap (OrangeBalloon),
{smooth: true}
)
1

As we saw in Chapter 2, Creating and Displaying Primitives, Sprite3D objects need
to be added to a Mesh object before they are visible within the scene. Here we create
a new Mesh object and add it to the scene.

var mesh:Mesh = new Mesh() ;
scene.addChild (mesh) ;

In this for loop, we create the sprite3D objects that represent the balloons.

var sprite:Sprite3D;
for (var i:int = 0; i < NUMBER_OF BALLOONS; ++1i)

{

Each sprite3D object is created using a randomly selected material.

sprite = new Sprite3D(
ballonTextures [Math.round (Math.random() *
(ballonTextures.length - 1))]

)i

[243]

Special Effects with Sprites

The sprite3D object is then randomly positioned in a box that is 1,000 x 1,000 x 2,000
units in size.

sprite.x = Math.random() * 1000 - 500;
sprite.y = Math.random() * 1000 - 500;
sprite.z = Math.random() * 2000;
balloons.push (sprite) ;

Finally, to make the sSprite3D object visible, we add it to the parent Mesh object.

mesh.addSprite (sprite) ;

}
}

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

Every frame we loop through the sprite3D objects and modify their position so they
appear to be floating up into space.

for (var i:int = 0; i < NUMBER_OF BALLOONS; ++1i)

{

The position of the sprite3D objects along their X-axis is mapped to a sine wave.
This gives them the appearance of swaying gently in the breeze.

balloons[i] .x += Math.sin(getTimer() / 1000 + 1i);

The sprite3D objects also rise along the Y-axis. When they reach the top of the
imaginary box that contains them, they are dropped down to the bottom of the scene.

if (balloons[i] .y >= 500)
balloons[i] .y = -500;
else
balloons[i] .y += 5;

[244]

Chapter 9

When the application is run, you will see an endless sea of balloons rising up into
the sky. This simple example shows you the power of sprites. If we were to use a
thousand sphere 3D objects to represent the balloons, the application would most
likely run at only a few frames per second, but with sprite3D objects we can create
an application that runs quickly and smoothly.

Using the DirectionalSprite class

The Directionalsprite class provides a way to display one of a selection of
materials depending on the relative position of the camera to the sprite. By providing
a number of snapshots of a complex 3D object over a range of angles, it is possible to
fake the look of a complex 3D object using much less processing power than it would
take to render the actual 3D object in real time. This process was popular with a
number of older games like Wolfenstein 3D and Doom.

Before we can implement the DirectionalSprite class, we first need a number of
images taken or drawn of an object at various angles.

[245]

Special Effects with Sprites

Here is a shot taken of a 3D model. In this image, the camera is lying on the positive
end of the Z-axis looking back at the 3D object, which is situated at the origin. So the
unit vector (a vector with a length of 1 unit) pointing from the 3D object back to the
camera is (0, 0, 1). This vector is important, and will be used later on.

Here is a shot taken from the side of the 3D model. In this image, the camera is lying
on the positive end of the X-axis looking at the 3D object at the origin. The unit
vector from the 3D object back to the camera for this shot is (1, 0, 0).

[246]

Chapter 9

Here are two more shots of the 3D object. They are taken from the opposite sides
to the two first shots, so the unit vector from the 3D object back to the camera for
these shots is (0, 0, -1) and (0, -1, 0) respectively.

Now that we have some images of the 3D object from different angles, let's create
an application called simpleDirectionalSpriteDemo that displays them using
aDirectionalSprite object.

package

{

import
import
import
import
import
import

import
import

public

{

away3d.core.base.Mesh;
away3d.core.base.Vertex;
away3d.core.utils.Cast;
away3d.core.utils.Init;
away3d.materials.BitmapMaterial;
away3d.sprites.DirectionalSprite;
flash.geom.Vector3D;

flash.events.Event;

class SimpleDirectionalSpriteDemo extends Away3DTemplate

[247]

Special Effects with Sprites

The four shots of the 3D object are embedded.

[Embed (source = "front.png")]
protected var FrontImage:Class;
[Embed (source = "right.png")]
protected var RightImage:Class;
[Embed (source = "back.png")]
protected var BackImage:Class;
[Embed (source = "left.png")]
protected var LeftImage:Class;

protected var sprite:DirectionalSprite;
protected var parentMesh:Mesh;

public function SimpleDirectionalSpriteDemo ()

{

super () ;

protected override function initScene() :void

{

super.initScene () ;

Here we create a new instance of the DirectionalSprite class.

sprite = new DirectionalSprite() ;

The Directionalsprite object will display the four images shown previously. Each
of these images is added via the addDirectionalMaterial () function.

The first parameter defines the direction from the DirectionalSprite object to the
camera from which the image will be viewed. This is the same direction that was
described against the images shown above.

The second parameter is the material that will be displayed. Here, we use a
BitmapMaterial object that displays one of the embedded images.

sprite.addDirectionalMaterial (
new Vertex(0, 0, 1),
new BitmapMaterial (
Cast.bitmap (FrontImage),
{ smooth: true }
)
)i
sprite.addDirectionalMaterial (
new Vertex (1, 0, 0),

[248]

Chapter 9

new BitmapMaterial (
Cast.bitmap (RightImage) ,
{ smooth: true }
)
)
sprite.addDirectionalMaterial (
new Vertex (0, 0, -1),
new BitmapMaterial (
Cast.bitmap (BackImage) ,
{ smooth: true }
)
) ;
sprite.addDirectionalMaterial (
new Vertex(-1, 0, 0),
new BitmapMaterial (
Cast.bitmap (LeftImage),
{ smooth: true }
)
)

To display the DirectionalSprite object, we need to add it to a Mesh object, which
we create here.

parentMesh = new Mesh() ;

The DirectionalSprite object is then added to the Mesh object.

parentMesh.addSprite (sprite) ;

Finally, the Mesh object is added to the scene.

scene.addChild (parentMesh) ;

}

In the onEnterFrame () function, we rotate the DirectionalSprite object around
its Y-axis, just like we could rotate any other 3D object. It is important to note that
rotating the DirectionalSprite object in this way does not actually change its
orientation within the scene: all Away3D sprites orient themselves to face the
camera at all times. But this rotation does change the material that is displayed

by the DirectionalSprite object.

[249]

Special Effects with Sprites

To begin with, the rotationY property will be 0. This means that the local
Z-axis of the DirectionalSprite object is pointing down towards the positive
end of the global Z-axis. Remember that the Directionalsprite object has been
placed in front of the camera. This means that initially the camera is viewing the
DirectionalSprite object from behind. Thus, the unit vector pointing from the
3D object to the camera is (0, 0, -1).

Looking back to the materials we assigned via the addDirectionalMaterial ()
function, we can see that the image represented by the BackImage class is the one
that most closely matches the relative position of the camera. This means that when
the application is first run, the DirectionalSprite object will display the texture
showing the 3D object from the back.

Increasing the rotationY property has the effect of turning the DirectionalSprite
object to the right. When the rotation property approaches 90 degrees, the
DirectionalSprite object will display the Right Image texture because the relative
angle between the camera and the DirectionalSprite object will be smallest when
compared with the angle defined for the Right Image texture.

As the rotationY property increases even more, the DirectionalSprite object
will display the Front Image and LeftImage textures, before going back to display
the BackImage texture.

protected override function onEnterFrame (event:Event) :void
super .onEnterFrame (event) ;
parentMesh.rotationY += 5;

}
}
}

While this application only shows four images, you can use many more images
to achieve smoother transition between angles. The DirectionalSpriteDemo
application available on the Packt website uses 72 images to show the 3D object
from angles 5 degrees apart. This produces quite a smooth appearance as the
DirectionalSprite object is rotated, and does so at a high frame rate. However,
while the DirectionalSprite class can use many individual images to display
highly detailed 3D objects while maintaining a high frame rate, quite often the
memory required by the individual images is much greater than if you were to
add a 3D object to the scene directly.

[250]

Chapter 9

Using the DepthOfFieldSprite class

In photography, the depth of field refers to the area in front of the camera that
appears sharp and in focus. This effect is quite often used to emphasize a portion
of a scene, while de-emphasizing the foreground and background.

When rendering a scene in Away3D, there is no depth of field; the entire scene

is in perfect focus. However, the effect can be approximated by using the
DepthOfFieldsprite class, which will precalculate a number of increasingly blurry
images from the material that is supplied to the DepthOfFieldSprite constructor
and store them in a shared cache. One of these images will then be displayed by the
sprite at runtime depending on the distance of the DepthOfFieldSprite object to
the camera.

package

{
import away3d.containers.ObjectContainer3D;
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;
import away3d.core.utils.DofCache;
import away3d.materials.BitmapMaterial;
import away3d.sprites.DepthOfFieldSprite;

import flash.display.BitmapData;
import flash.events.Event;

public class DepthOfFieldSpriteDemo extends Away3DTemplate

{

We embed an image file, which will be used as the base texture for the
DepthOfFieldSprite objects.

[Embed (source="blackdot .png")]
protected var BlackDot:Class;

The container Mesh into which we will be adding the DepthOfFieldSprite objects
is referenced by the container property.

protected var container:Mesh;

public function DepthOfFieldSpriteDemo ()

{

super () ;

}

[251]

Special Effects with Sprites

The DofCache class includes a number of properties that define the appearance of the
DepthOfFieldSprite class. These have been defined in the initEngine () function.

protected override function initEngine () :void

{

super.initEngine () ;

The aperture property is used to approximate the effect of a camera's aperture.
Larger values for the aperture property increase the depth of field, meaning that
DepthOfFieldSprite objects remain relatively sharp over a large area in front of
the camera. Smaller values will lead to DepthofFieldSprite objects appearing
sharp within a smaller area.

DofCache.aperture = 50;

The doflevels property defines how many discreet levels of blurriness will be
precalculated and cached for a given bitmap image. One of these cached images will
then be displayed by a DepthofFieldSprite object at runtime, depending on its
position relative to the camera. Larger values for the doflevels property result in

a smoother transition from one cached image to the next. However, this increased
visual quality requires more memory to accommodate the additional cached images
and takes more time while the images are precalculated.

DofCache.doflevels = 32;

The maxblur property defines the maximum blurriness to apply to a
DepthOfFieldSprite object. Larger values for the maxblur property will result in
more pronounced distinction between those DepthofFieldsprite objects that are
in the depth of field and those that are not.

DofCache.maxblur = 50;

The focus property defines the distance in front of the camera where
DepthOfFieldSprite objects are considered to be in focus.

DofCache.focus = 2000;

Setting the usedof property to true will allow DepthofFieldSprite objects to
display the depth of field effect. Otherwise, they would behave like a regular
Sprite3D object.

DofCache.usedof = true;

[252]

Chapter 9

Each of the properties defined in the DofCache class, with the exception
of usedof, has an equivalent property in the Camera3D class. The
enableDof () function from the Camera3D class copies these properties
from the Camera3D class to the DofCache class, and sets the usedof
property to true.

\l The reason why we have set the values directly on the DofCache class,
y instead of using those in the Camera3D class, is because the camera's
Q focus will quite often be different to the value used to calculate the depth
of field effect. If you remember from Chapter 7, Cameras, setting the
camera's focus to 2,000 would decrease the camera's field of view, which
would have the undesired effect of providing a very narrow view of
the scene.

To get the effect we are after, the values that affect the depth of field effect
are set directly on the DofCache class, and the camera is left alone.

In the initScene () function, we create a number of DepthOfFieldSprite objects
and add them to the scene.

protected override function initScene () :void

{

super.initScene () ;

Here we define a reference to a BitmapMaterial object that will be supplied to the
DepthOfFieldSprite constructor.

It would be possible to create the DepthOfFieldSprite objects with
their own reference to a BitmapMaterial object with the following code:

var sprite: DepthOfFieldSprite =
new DepthOfFieldSprite (
~Q new BitmapMaterial (Cast.bitmap (BlackDot))
)
)i
However, doing so increases the amount of time it takes to initialize

the application. Supplying a common material object to the
DepthOfFieldSprite constructor avoids this issue.

var blackDotBitmap:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (BlackDot)) ;

[253]

Special Effects with Sprites

The container Mesh that will hold the DepthofFieldsprite objects is created,
positioned, and added to the scene.

container = new Mesh({z: 1000});
scene.addChild (container) ;

Now we create the DepthOfFieldSprite objects, and randomly place them in a
1,000 x 1,000 x 1,000 unit area. Because the DepthOfFieldSprite objects are children
of the Mesh object created above, their global range along the Z-axis will be from

500 to 1,500, while their ranges on the X and Y axes will both be from -500 to 500.

var sprite:DepthOfFieldSprite;
for (var i:int = 0; 1 < 250; ++1)
{
sprite = new DepthOfFieldSprite (blackDotBitmap) ;
sprite.x = Math.random() * 1000 - 500;
sprite.y = Math.random() * 1000 - 500;
sprite.z = Math.random() * 1000 - 500

container.addSprite (sprite) ;

}

In the onEnterFrame () function, the container is rotated around the Y-axis. This, in
turn, rotates the children DepthofFieldSprite objects, modifying their distance to
the camera, and thus showing off the depth of field effect.

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

container.rotationY += 1;

[254]

Chapter 9

As you can see from the following screenshot, those DepthOfFieldSprite
objects that lay within the depth of field are drawn as sharp black dots. As the
DepthOfFieldSprite objects move progressively further outside the depth

of field, they become increasingly blurred.

N D °
S ce. %0 A ¢
.‘. - - v .*.... -
LE .
- ® Chd eo*
. - .' Y ’. . v
[- ® "
. ..‘. ' o »
. . _°, .
. " '. ‘ o .
.« * % .S o0,
. .‘. ...‘.. ..~‘ .0
¢ . . P L
Ao o o* t

Using a particle system
In the preceding examples, we have manually created and transformed the sprite
objects. In the sprite3D demo, we created an effect that looked like a field of rising
balloons, and in the DepthOfFieldSpriteDemo demo we created an effect that
looked like a collection of particles suspended in a clear, rotating liquid. We could
create an almost endless variety of effects, like smoke, fire, water, firework, in much
the same way, but defining the properties of each of these effects individually every
time would be time consuming. This is where a particle system comes in handy. A
particle system provides a collection of common classes that allow you to quickly
build up effects using particles (or sprites, as is the case with Away3D).

[255]

Special Effects with Sprites

. Generally speaking, the term particle and sprite can be used
~ interchangeably. Technically, in the context of Away3D's integration
Q with Stardust, a sprite is an Away3D sprite object, while a particle is
an object managed by Stardust that is used to display a sprite.

Away3D does not include a particle system, but there are a number of particle
system libraries available that can be integrated with Away3D. Flint, which can be
downloaded from http://flintparticles.org/, is a particle system that natively
supports Away3D. Flint includes a number of demos that show how it can be used
with Away3D.

Stardust, which can be downloaded from http://code.google.com/p/stardust -
particle-engine/, is another particle system with support for Flash 3D engines.
At the time of writing, Stardust version 1.2.163 does not have any native support for
Away3D, but it is fairly easy to integrate the two libraries.

The following code uses Stardust version 1.2.163, which relies on the CJsignals
library that can be downloaded from http://code.google.com/p/cjsignals/.

We need to create two classes to integrate Stardust and Away3D. The first is an
initializer class. The purpose of this class is to provide a way to construct new
Away3D sprite objects by calling the constructor of an Away3D sprite class with
some specified arguments. In essence, this initializer class provides a flexible
mechanism by which new sprite objects can be created at runtime.

Creating the Away3D Stardust initializer

We will create this initializer class in the stardust.initializers package, which is
in keeping with the format used by the Stardust library itself.

package stardust.initializers

{

import away3d.sprites.Sprite3D;

import idv.cjcat.stardust.common.particles.Particle;
import idv.cjcat.stardust.common.utils.construct;
import idv.cjcat.stardust.threeD.initializers.Initializer3D;

We will call this class Away3DParticle, to indicate that it initializes an Away3D
sprite to be attached to a Stardust particle. We extend the Stardust Initializer3D
class, which will allow this class to initialize a 3D Stardust particle.

public class Away3DParticle extends Initializer3D

{

[256]

Chapter 9

The constructorParams collection will hold the values that will be passed to the
Sprite3D constructor.

private var _constructorParams:Array;

The constructor takes an Array and assigns it to the _constructorpParams property.

public function Away3DParticle (constructorParams:Array = null)

{

this.constructorParams = constructorParams;

}

A pair of get () and set () functions are defined to allow the constructor parameters
to be retrieved and set after the Away3DParticle object has been created.

public function get constructorParams():Array { return _
constructorParams; }

public function set constructorParams (value:Array) :void
if (!value) value = [];
_constructorParams = value;

}

The initialize () function is called by the Stardust library to attach a new Away3D
sprite to a particle.

override public function initialize(particle:Particle) :void

{

The construct () function, provided by the Stardust library, provides a way to pass
an arbitrary number of parameters to the constructor of a given class, which is the
Sprite3D class in this case. The resulting Ssprite3D object is then assigned to the
Stardust particle object's target property. This allows us to retrieve a reference

to the sprite3D object from the Stardust particle object later on.

particle.target = construct (Sprite3D, _constructorParams) ;

}

[257]

Special Effects with Sprites

Creating the Away3D Stardust particle
renderer

The second class we need to create is the particle renderer. This class provides a way
for the Stardust library to add and remove sprites from the scene, as well as transfer
the properties of the Stardust particles (like position, rotation, and scale) to the
Away3D sprites that will be visually representing them.

We will create this particle renderer class in the stardust . renderers package.
Again, this is in keeping with the format used by the Stardust library itself.

package stardust.renderers
import away3d.core.base.Mesh;
import away3d.sprites.Sprite3D;
import idv.cjcat.stardust.common.emitters.Emitter;
import idv.cjcat.stardust.common.particles.ParticleCollection;

import idv.cjcat.stardust.common.events.EmitterEvent;

import idv.cjcat.stardust.common.particles.Particlelterator;
import idv.cjcat.stardust.common.renderers.Renderer;

import idv.cjcat.stardust.common.xml.XMLBuilder;

import idv.cjcat.stardust.threeD.particles.Particle3D;

The class is called Away3DParticleRenderer, to indicate that it is used to render
Away3D particles. We extend the Stardust Renderer class, which provides the
functions used by the Stardust library to manage its particles.

public class Away3DParticleRenderer extends Renderer

{

The particleContainer property will maintain a reference to the parent Mesh object
that will hold our sprite3D objects.

private var particleContainer:Mesh;

The constructor takes a Mesh parameter, and assigns it to the particleContainer
property.
public function Away3DParticleRenderer (particleContainer:Mesh =

null)

{

super () ;
this.particleContainer = particleContainer;

[258]

Chapter 9

The render () function is used to transfer the properties of the Stardust particles
to the Away3D sprites that represent them.

protected override function render (emitter:Emitter, particles:
ParticleCollection, time:Number) :void

{
Here we loop over all the particles provided by the particles parameter.

var particle:Particle3D;

var iter:ParticleIterator =
particles.particles.getIterator () ;

while (particle = Particle3D(iter.particle))

{

If you look back at the Away3DParticle initialize () function, you will see that
we assigned the Sprite3D objects to the target property of the Stardust particle
object. Here we do the reverse, using the target property to get access to the
Sprite3D object.

var p:Sprite3D = particle.target as Sprite3D;

The Stardust Particle3D class maintains its own set of properties, which are used
to define the appearance of the particle. However, the Stardust particle itself is not
visible; it simply holds the properties that define how the particle should appear. It
is the job of the particle renderer class to map the properties of the Stardust particle
to the object that is being used to represent the particle on the screen. In our case, the
object that is being used to represent the particle on the screen is a Sprite3D. Here
we take the position and scale of the Stardust particle and assign those values to the
Sprite3D object.

1
‘Q The Particle3D class includes some additional properties, like color,

mask, and alpha, that we have not applied to the Sprite3D object.

particle.x;
particle.y;

N KX
I

p.-
p-
p.z = particle.z;

p.scaling = particle.scale;

iter.next () ;

[259]

Special Effects with Sprites

It would also be possible to map the rotation of the Stardust particle
like so:

p.rotation = particle.rotationZ;

However, there is a bug in Away3D 3.6 that causes sprites to be rotated
incorrectly. This issue has been fixed in the version of Away3D available
from the SVN repository.

The particlesaAdded () function is used to add the sprite3D objects
attached to Stardust particles to the parent Mesh object, referenced by the
particleContainer property.

protected override function particlesAdded(emitter:Emitter,
particles:ParticleCollection) :void
{
if (!particleContainer) return;
var particle:Particle3D;
var iter:ParticleIterator =
particles.particles.getIterator() ;
while (particle = Particle3D(iter.particle))
{
var p:Sprite3D = particle.target as Sprite3D;
particleContainer.addSprite (p) ;
iter.next () ;

}

The particlesRemoved () function is used to remove the Sprite3D objects attached
to Stardust particles from the parent Mesh object.

protected override function particlesRemoved (emitter:Emitter,
particles:ParticleCollection) :void
{
if (!particleContainer) return;
var particle:Particle3D;
var iter:ParticleIterator =
particles.particles.getIterator () ;
while (particle = Particle3D(iter.particle))
{
var p:Sprite3D = particle.target as Sprite3D;
particleContainer.removeSprite (p) ;
iter.next () ;

[260]

Chapter 9

The getxXMLTagName () function should return the name of the class. This function is
used by the Stardust library to load particle effects from an XML file.

/ /XML

public override function getXMLTagName () :String

{

return "Away3DParticleRenderer";

//end of XML

Creating the Stardust emitter

Now that we have created the classes that will allow Away3D to be used with
Stardust, we can create a simple emitter. An emitter combines initializers, which
define the initial properties of a particle, and actions, which define how a particle
will be modified over time. The Stardust library comes with a large selection of
initializers and actions, which allow us to create some interesting effects with

a minimum of code.

package
{
import
import

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

away3d.core.utils.Cast;

away3d.materials.BitmapMaterial;

idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.
idv.

cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.
cjcat.

stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.
stardust.

commorn .
commorn .
commorn .
commorn .
commorn .

common

actions.Age;
actions.DeathLife;
actions.ScaleCurve;
clocks.SteadyClock;
initializers.Life;

.math.UniformRandom;
threeD.
threeD.
threeD.
threeD.
threeD.
threeD.
threeD.
threeD.
threeD.

actions.Damping3D;
actions.Move3D;
actions.Spin3D;
emitters.Emitter3D;
fields.UniformField3D;
initializers.Omega3D;
initializers.Position3D;
initializers.Rotation3D;
initializers.Velocity3D;

[261]

Special Effects with Sprites

import idv.cjcat.stardust.threeD.zones.SinglePoint3D;
import idv.cjcat.stardust.threeD.zones.SphereShell;

import stardust.initializers.Away3DParticle;

The emitter class, called StarDustSparksEmitter, extends the Stardust Emitter3D
class. This will allow us to define a 3D particle system.

public class StarDustSparksEmitter extends Emitter3D

{

The Away3D sprite3D objects will display a BitmapMaterial that displays the
embedded star.png image as a texture.

[Embed (source="star.png")]
protected var Star:Class;

public function StarDustSparksEmitter ()

{

The base Emitter3D class constructor takes a clock object as a parameter. This
clock object defines how many particles will be created per frame. Here we have
used the steadyClock class. By passing in 0.3 to the ticksPerCall constructor
parameter, we have given this emitter a 30 percent chance of creating a new
particle every frame.

super (new SteadyClock(0.3));

Now we define the initial properties of the particles. This is done by passing
initializer classes to the emitter using the addInitializer () function.

First up, we use the away3DParticle initializer, which we created above, to assign

a Sprite3D object to each new particle. We have passed in an Array that contains
anew BitmapMaterial object as the first parameter of the Away3DParticle
constructor. This BitmapMaterial object will then be passed to the sprite3p
constructor as new Sprite3D objects are created by the Away3Dparticle
initialize () function. The second object in the Array is an init object, which sets
the smooth init object parameter to true. This init object will be passed as the second
parameter to the Sprite3D constructor.

addInitializer(
new Away3DParticle (
[
new BitmapMaterial (Cast.bitmap (Star),
{smooth: true})

[262]

Chapter 9

The Life initializer uses the UniformRandom class to set the initial lifespan of each
new particle to between 10 and 50 frames.

addInitializer (new Life (new UniformRandom (50, 10)));

The Position3D initializer uses the SinglePoint3D class to set the initial position of
each new particle to (0, 0, 2500).

addInitializer (
new Position3D(new SinglePoint3D(0, 0, 2500)));

The velocity3D initializer uses the sphereshell class to define the initial velocity

of the new particles. This velocity is defined as a vector pointing from the origin to a
random point on a sphere centered on the origin (defined by the first three parameters
passed to the Sphereshell constructor) that is between 30 and 40 units in radius
(defined by the last two parameters passed to the Sphereshell constructor). You can
see in the following image how some of these random vectors might be created:

Inner sphere has
radius of 30 units

QOuter sphere has
radius of 40 units

The random vectors point from the centre
of the two spheres to anywhere on and
between the surfaces of the two spheres.

addInitializer (
new Velocity3D(new SphereShell (0, 0, 0, 30, 40)));

[263]

Special Effects with Sprites

The Rotation3D initializer is used here to set the initial rotation of the new particles
to between 0 and 180 degrees around the Z-axis. Because of a bug in Away3D 3.6,
the sprite3D objects won't actually be rotated. However, if you use the version of
Away3D from the SVN repository, and include the line of code motioned in the tip
for the Away3DpParticleRenderer render () function, you can implement rotations
for sprite3D objects.

1
‘Q Because a Sprite3D object is always oriented to face the camera, rotating

the particles around the X and Y axes won't have any effect.

addInitializer (
new Rotation3D (
null,
null,
new UniformRandom (0, 180)
)
) ;

Finally, we use the omega3D initializer to set the rotational velocity of the new
particles to between 0 and 5 degrees per frame around the Z-axis.

addInitializer (
new Omega3D(null, null, new UniformRandom(0, 5))

) ;

Now that we have defined the initial properties that will be assigned to new
particles, we need to define how the particles will be modified over time. New
action classes are added to the emitter using the addaction () function.

The age action will decrease the life of each particle by one each frame.
addAction (new Age()) ;

The DeathLife action will remove a particle from the system when its age
reaches zero.

addAction (new DeathLife()) ;

The Move3D action will move a particle according to its velocity in three dimensions
each frame.

addAction (new Move3D()) ;

[264]

Chapter 9

The spin3D action will rotate a particle according to its rotational velocity
each frame.

addAction (new Spin3D()) ;

The Damping3D action will reduce the velocity of the particles by the supplied
fraction each frame. By supplying 0.05 to the Damping3D constructor, we will
decrease the velocity of each particle by 5 percent each frame.

addAction (new Damping3D(0.05)) ;

The scalecurve action is used to scale the particle from nothing up to its native size,
and then back down to nothing. Because we have supplied 0 to the first Scalecurve
constructor parameter, the particles will not be scaled up, and instead will be created
at their native size. Setting the second parameter to 10 indicates that the particles will
scale down to nothing over the last 10 frames of their life.

addAction (new ScaleCurve (0, 10));

}
}
}

Putting it all together

With the emitter created, we can now initialize the Away3D engine, the Away3D
particle renderer, and the emitter itself. This is done by a class called StarDustDemo.

package

{

import away3d.core.base.Mesh;
import flash.geom.Vector3D;

import flash.events.Event;
import idv.cjcat.stardust.threeD.emitters.Emitter3D;

import stardust.renderers.Away3DParticleRenderer;

We create a new class that extends the Away3DTemplate class, just as we have done
for all the other applications presented in this book so far.

public class StarDustDemo extends Away3DTemplate

{

[265]

Special Effects with Sprites

The emitter will be referenced by the emitter property.

protected var emitter:Emitter3D;

public function StarDustDemo ()

{

super () ;

protected override function initScene() :void

{

super.initScene () ;
The position of the camera is set to the origin of the scene.
this.camera.position = new Vector3D() ;
We need to create a new instance of the emitter class.
emitter = new StarDustSparksEmitter() ;

We also need to create a new instance of the Away3D particle renderer class.
We pass in the scene property to the Away3DParticleRenderer constructor. This
means that all the new sprite3D objects will be directly added to the scene.

var renderer:Away3DParticleRenderer =
new Away3DParticleRenderer (this.scene) ;

The emitter is then added to the Away3D particle renderer.

renderer.addEmitter (emitter) ;

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

To update the particle system, we need to call the emitter's step () function. This will
update the particle effect by one frame.

emitter.step() ;

[266]

Chapter 9

Although we had to do some work creating the classes that glue the Stardust library
to the Away3D engine, once that was done we could create a reasonably complicated
particle effect (including movement, rotation, and scaling) with just a dozen or so
lines of code (if you exclude the boilerplate code for the import statements and the
class and function declarations). This is why a library like Stardust is so useful.

You can see the final result of the StarDustDemo application in the
following screenshot:

F

hdobe Flash Player 10

File Wiew Control Help

Summary

Away3D includes three sprite classes:

e Sprite3D
e DepthOfFieldSprite

e DirectionalSprite

The sprite3D class is used to display a static image that is oriented to always face
the camera. The DepthOfFieldSprite class is used to approximate the depth of
field effect that is seen in photography. And the DirectionalSprite classis used

to display one of a number of images depending on the orientation of the sprite in
relation to the camera, using a technique that was popular in older games like Doom.

[267]

Special Effects with Sprites

Thanks to their simple geometry, numerous Away3D sprites can be added to the
scene at any given time while maintaining a high frame rate. We can take advantage
of this to create some interesting visual effects, either by using the various sprite
classes on their own, or by using them in conjunction with a particle system like Flint
or Stardust. Stardust does not integrate with Away3D natively, but we have seen
how to create two classes, Away3DParticle and Away3DParticleRenderer, that let
us display a Stardust particle system using Away3D Sprite3D objects.

In the next chapter, we will look at how Away3D can be used to create and display
3D text.

[268]

10

Creating 3D Text

Away3D includes a number of ways to programmatically create 3D objects. We saw
in Chapter 2, Creating and Displaying Primitives, how to create a 3D object from the
ground up using the base elements, such as vertices and triangle faces, or by using
the primitive 3D object classes.

A relatively recent addition to Away3D is the ability to create a 3D object from a
font, which allows us to easily add 3D text into a scene. This ability is provided by an
external library called swfvector, which is contained in the wumedia package. More
information about the swfvector library can be found at http://code.google.com/
p/swfvector/. This library was not developed as part of the Away3D engine, but
has been integrated since version 2.4 and 3.4, to enable Away3D to provide a way

to create and display text 3D objects within the scene.

Away3D also includes the ability to warp a text 3D object by aligning it to a path
made up of both straight and curved sections. This chapter will present a sample
application that can warp 3D text, as well as some handy tips on debugging this
alignment process.

In this chapter, we will look at:

e Embedding fonts into an application
e Creating a text 3D object

¢ Applying materials to the 3D text

e Giving the 3D text some depth

e Warping the 3D text along a path

Creating 3D Text

Embedding fonts

Creating a text 3D object in Away3D requires a source SWF file with an embedded
font. To accommodate this, we will create a very simple application using the Fonts
class below. This class embeds a single true-type font called Vera Sans from the
Vera.ttf file.

When compiled, the resulting SWF file can then be referenced by our Away3D
application, allowing the embedded font file to be accessed.

When embedding fonts using the Flex 4 SDK, you may need to set
the embedAsCFF property to false, like:

[Embed (mimeType="application/x-font", source="Vera.
~\IQ ttf", fontName="Vera Sans", embedAsCFF=false)]

This is due to the new way fonts can be embedded with the latest
versions of the Flex SDK. You can find more information on the
embedAsCFF property at http://help.adobe.com/en_US/
flex/using/WS2db454920e96a9e51e63e3dllc0bf6320a-
7fea.html

package

{

import flash.display.Sprite;

public class Fonts extends Sprite
{

[Embed (mimeType="application/x-font", source="Vera.ttf",
fontName="Vera Sans")]

public var VeraSans:Class;

}
}

The font used here is Bitstream Vera, which can be freely
M distributed, and can be obtained from http://www.gnome.org/
Q fonts/. However, not all fonts can be freely redistributed, so be
mindful of the copyright or license restrictions that may be imposed
by a particular font.

[270]

Chapter 10

Displaying text in the scene

Text 3D objects are represented by the TextField3D class, from the
away3d.primitives package. Creating a text 3D object requires two steps:

1. Extracting the fonts that were embedded inside a separate SWF file.

2. Creating a new TextField3D object.

Let's create an application called FontDemo that creates a 3D textfield and adds it
to the scene.

package

{

We import the TextField3D class, making it available within our application.

import away3d.primitives.TextField3D;

The vectorText class will be used to extract the fonts from the embedded SWEF file.

import wumedia.vector.VectorText;

public class FontDemo extends Away3DTemplate

{

The Fonts. swF file was created by compiling the Fonts class above. We
want to embed this SWF file as raw data, so we specify the MIME type to be

application/octet-stream.

[Embed (source="Fonts.swf", mimeType="application/octet-stream")]
protected var Fonts:Class;

public function FontDemo ()

{

super () ;

}

protected override function initEngine () :void

{

super.initEngine () ;

[271]

Creating 3D Text

Before any TextField3D objects can be created we need to extract the fonts from the
embedded SWF file. This is done by calling the static extractFonts () function in
the vectorText class, and passing a new instance of the embedded SWF file. Because
we specified the MIME type of the embedded file to be application/octet-stream,
a new instance of the class is created as a ByteArray.

VectorText .extractFont (new Fonts()) ;

protected override function initScene() :void
super.initScene () ;

this.camera.z = 0;

Here we create the new instance of the TextField3D class. The first parameter is the
font name, which corresponds to the font name included in the embedded SWF file.
The TextField3D constructor also takes an init object, whose parameters are listed
in the next table.

var text:TextField3D = new TextField3D("Vera Sans",
{
text: "Away3D Essentials",
align: VectorText.CENTER,
z: 300
!
)i
scene.addChild (text) ;
!
!
!

The following table shows you the init object parameters accepted by the
TextField3D constructor.

Parameter Type Default Description
Value
size int 20 The font size in pixels.
leading int 20 Determines the amount of space
between lines in a paragraph.
letterSpacing int 0 Determines the amount of space
between each character.
text String i The text to display.

[272]

Chapter 10

Parameter Type Default Description
Value
width int 500 The width of the drawing area. If the

text is greater than this number then
we start wrapping to the next line. To
disable wrapping set the textWidth
property to Number . POSITIVE

INFINITY.
align String "TL" or Defines the alignment of the text. The
VectorText. VectorText class defines a number

TOP_LEFT of constants that can be assigned
to the align property. These are
TOP_LEFT CENTER, TOP_LEFT,
TOP_RIGHT, BOTTOM LEFT, BOTTOM
LEFT CENTER, BOTTOM RIGHT, LEFT,
LEFT_ CENTER, RIGHT, TOP, BOTTQVN,
and CENTER.

When the application is run, the scene will contain a single 3D object that has been
created to spell out the words "Away3D Essentials" and formatted using the supplied
font. At this point, the text 3D object can be transformed and interacted with, just like
other 3D object.

Away3D Essentials

3D Text materials

If you remember from Chapter 2, Creating and Displaying Primitives, bitmap materials
are applied to the surface of a 3D object according to their UV coordinates. The
default UV coordinates defined by a TextField3D object generally do not allow
bitmap materials to be applied in a useful manner. However, simple colored
materials like WireframeMaterial, WireColorMaterial, and ColorMaterial

can be applied to a TextField3D object.

[273]

Creating 3D Text

Extruding 3D text

By default, a text 3D object has no depth (although it is visible from both sides). One
of the extrusion classes (which are covered in more detail in Chapter 11, Extrusions
and Modifiers) called TextExtrusion can be used to create an additional 3D object
that uses the shape of a text 3D object and extends it into a third dimension. When
combined, the TextExtrusion and TextField3D objects can be used to create the
appearance of a solid block of text. The FontExtrusionDemo class in the following
code snippet gives an example of this process:

package

import away3d.containers.ObjectContainer3D;
import away3d.extrusions.TextExtrusion;
import away3d.primitives.TextField3D;

import flash.events.Event;
import wumedia.vector.VectorText;

public class FontExtrusionDemo extends Away3DTemplate

{

[Embed (source="Fonts.swf", mimeType="application/octet-stream")]
protected var Fonts:Class;

The TextField3D 3D object and the extrusion 3D object are both added as children
of a ObjectContainer3D object, referenced by the container property.

protected var container:ObjectContainer3D;
The text property will reference the TextField3D object used to display the 3D text.

protected var text:TextField3D;

The extrusion property will reference the TextExtrusion object used to give the
3D text some depth.

protected var extrusion:TextExtrusion;

public function FontExtrusionDemo ()

{
}

super () ;

protected override function initEngine() :void

{

[274]

Chapter 10

super.initEngine () ;
this.camera.z = 0;
VectorText .extractFont (new Fonts()) ;

protected override function initScene () :void

{

super.initScene() ;

text = new TextField3D("Vera Sans",

{

text: "Away3D Essentials",
align: VectorText.CENTER

}
)i

The TextExtrusion constructor takes a reference to the TextField3D object (or any
other Mesh object). It also accepts an init object, which we have used to specify the
depth of the 3D text, and to make both sides of the extruded mesh visible.

extrusion = new TextExtrusion (text,

{
depth: 10,
bothsides:true

!
)i

The ObjectContainer3D object is created, supplying the TextField3D and
TextExtrusion 3D objects that were created above as children. The initial position of
the ObjectContainer3D object is set to 300 units down the positive end of the Z-axis.

container = new ObjectContainer3D (text, extrusion,

The container is then added as a child of the scene.

scene.addChild (container) ;

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

[275]

Creating 3D Text

The container is slowly rotated around its Y-axis by modifying the rotationy
property in every frame. In previous examples, we have simply incremented the
rotation property, without any regard for when the value became larger than 360
degrees. After all, rotating a 3D object by 180 or 540 degrees has the same overall
effect. But in this case, we do want to keep the value of the rotationy property
between 0 and 360 so we can easily test to see if the rotation is within a given range.
To do this, we use the mod (%) operator.

container.rotationY =

(container.rotationY + 1) % 360;

Z-sorting issues can rise due to the fact that the TextExtrusion and TextField3D
objects are so closely aligned. This issue results in parts of the TextField3D or
TextExturude 3D objects showing through where it is obvious that they should
be hidden.

To solve this problem, we can use one of the procedures detailed in Chapter 4,
Z-Sorting, to force the sorting order of 3D objects. Here we are assigning a positive
value to the TextField3D screenZOffset property to force it to be drawn behind
the TextExturude object, when the container has been rotated between 90 and 270
degrees around the Y-axis. When the container is rotated like this, the TextField3D
object is at the back of the scene. Otherwise, the TextField3D is drawn in front by
assigning a negative value to the screenzof fset property.

if (container.rotationY > 90 &&
container.rotationY < 270)
text.screenzOffset = 10;

else
text.screenzOffset = -10;

}
}
}

The result of the FontExtrusionDemo application is shown in the following image:

[276]

Chapter 10

Warping 3D text

Away3D can not only create text 3D objects, it can also warp them by aligning them
to arbitrary paths made up of straight lines or curves. This can be used to create
some interesting effects, like wrapping text around another 3D object. The following
TextWarpingDemo class demonstrates how to align a 3D text object to a wave-like
curve, a path made up of two straight lines, and a simple, single curve.

package

{

The Path and PathCommand classes are used to define the path that the text will align
itself to.

import away3d.core.geom.Path;
import away3d.core.geom.PathCommand;
import away3d.materials.ColorMaterial;

The PathalignModifier class is responsible for transforming a 3D object to align it
to a given path.

import away3d.modifiers.PathAlignModifier;
import away3d.primitives.TextField3D;
import flash.geom.Vector3D;

import flash.events.KeyboardEvent;

import wumedia.vector.VectorText;

public class TextWarpingDemo extends Away3DTemplate
{

[Embed (source="Fonts.swf", mimeType="application/octet-stream")]
protected var Fonts:Class;
protected var text:TextField3D;

public function TextWarpingDemo ()

{

super () ;

protected override function initEngine () :void

super.initEngine () ;
VectorText .extractFont (new Fonts()) ;

[277]

Creating 3D Text

protected override function initScene () :void
super.initScene () ;
this.camera.z = 0;
followLine () ;

protected override function initListeners() :void
{
super.initListeners() ;
stage.addEventListener (
KeyboardEvent .KEY UP,
onKeyUp
)

protected function onKeyUp (event:KeyboardEvent) :void

{

switch (event.keyCode)

case 49: // 1
followContinuousCurve () ;

break;

case 50: // 2
followLine () ;
break;

case 51: // 3
followCurve () ;
break;

}

The setupText () function will remove an existing text 3D object (if one exists) and
recreate it each time we align it to a new path when the followContinuousCurve (),
followLine (), and followCurve () functions are called.

protected function setupText () :void

{

if (text != null)

{

scene.removeChild (text) ;

[278]

Chapter 10

You will notice that we have added a few extra spaces in the string we want to
display as a 3D object. This is simply to allow the text to align nicely around the right
angle we will add in the straight line path created in the followLine () function.

text = new TextField3D("Vera Sans",
{
text: "Away3D Essentials",
size: 15,
material: new ColorMaterial (0)
1
)i
scene.addChild (text) ;

}

The next three functions are used to align the 3D text object to various paths. The

followContinuousCurve () function will create a wave-like path to align the text
3D object.

protected function followContinuousCurve () :void

{
We call the setupText () function to create our text 3D object.

setupText () ;

Next, we create a new Path object. It is this object that will contain the points that
define the path that our text 3D object will align itself to.

var path:Path = new Path{() ;

Here we have used the continousCurve () function to define a curve with four
points, supplied as an array of Vector3D objects. We have defined a curve that
starts at (-75, -50, 300), moves up towards (-25, 50, 300), then moves down towards
(25, -50, 300), and finally moves towards the last point at (75, 0, 300).

path.continuousCurve (
[
new Vector3D(-100, -50, 300),
-25, 50, 300),
25, -50, 300),

100, 0, 300)

new Vector3D
new Vector3D
new Vector3D

(
(
(
(

[279]

Creating 3D Text

This creates a path that looks like the following image:

(75, -50, 300}

(25,50, 300)
[]

(75, 0, 300)

\@\l

\%\Q
1Eia\e

(25,-50, 300)

a1

Due to the way the curve is calculated, it starts half way in
between the first and second points and finishes half way
between the last and the second last points. You can confirm
this for yourself by adding the following code after the call to
the continuousCurve () function:

scene.addChild (new Sphere({x: -75, y: -

50, z: 300, radius: 1, material: new

ColorMaterial (0) }));

scene.addChild (new Sphere ({x: -25, y:

50, z: 300, radius: 1, material: new

ColorMaterial (0) }));

scene.addChild (new Sphere ({x: 25, y: -

50, z: 300, radius: 1, material: new

ColorMaterial (0) }));

scene.addChild (new Sphere ({x: 75, y:

0, z: 300, radius: 1, material: new

ColorMaterial (0) }));

path.debugPath (scene) ;

path.showAnchors = false;

[280]

Chapter 10

The sphere 3D objects are positioned in the scene using the same locations
as the points we supplied to the continuousCurve () function.

Calling the debugPath () function will then create a PathDebug

object, which will visually display the path. You will see that the start

and end points of the curve lie inbetween the points we supplied to the
continuousCurve () function.

We have also set the showAnchors property to false. When set to true
(which is the default) the PathDebug object will add a number of sphere
. 3D objects to show the points that make up the path, much like we have
% just done manually. However, these spheres have a radius of 50 units,
~~—" which would unfortunately completely fill up a scene like this. To work
around this, you can modify the PathDebug class file, located in the
away3d. core.geom package, to change the size of these debug spheres.

The first line of the addAnchor () function looks like this (it is line 72 of
the PathDebug. as file):

var sphere:Sphere = new Sphere({material:mat,
radius:50, segmentsH:2, segmentsW:2 }) ;

Simply change the radius init object parameter to something like 5
instead of 50.

We create a new PathAlignModifier object, which will be used to modify our text
3D object so it is aligned to our path. The constructor takes the 3D object that is
to be modified, and the path that it will be aligned to.

var aligner:PathAlignModifier =
new PathAlignModifier (text, path);

The execute () function will then make the required changes to the text 3D object.

aligner.execute () ;

}

The followLine () function is used to align the text 3D object along a path made up
of a number of straight lines.

protected function followLine () :void

{

setupText () ;
var path:Path = new Path() ;

Above, we used the cont inuousCurve () function from the Path class to create
our path. Creating a path with straight lines is a little different. For this, we add
a number of PathCommands objects to the array property of the path class.

[281]

Creating 3D Text

The first parameter we supply to the PathCommand constructor is the type of
command that we are defining. Since we are defining a straight line, we use
the pathCommand . LINE constant.

The second parameter is the starting point of the line.

The third parameter is a control point. This is used when defining a curve, but has no
relevance when defining a straight line, so we leave it as null.

The fourth parameter is the end point of the line.

We push () two new PathCommand objects on to the array property of the path class
with the following code snippet:

path.array.push(
new PathCommand (
PathCommand.LINE,
new Vector3D(-75, -35, 300),
null,
new Vector3D(-75, 35, 300)
)
)i
path.array.push(
new PathCommand (
PathCommand.LINE,
new Vector3D(-75, 35, 300),
null,
new Vector3D (75, 35, 300)
)
)i

This will define a path that looks like the following image:

(-75, 35, 300} (75,35, 300)

DEssentlals

Away3

(-75,-35,200)

[282]

Chapter 10

Even though it makes no sense to have a modifier point when defining a
straight line, you will find that the PathDebug class expects the modifier
points not to be null. If you were to call the debugPath () function

on the Path object with the straight line path we have defined above,
you would see an error because the PathDebug object tries to read a
null modifier point object. The easiest way to visually debug a straight
line path is to use either the start or end point as a modifier point. In the
following code, we have defined the same path as we did previously,
with the exception that the start and modifier points are the same:

path.array.push (
new PathCommand (
~>| PathCommand.LINE,
new Vector3D(-75, -35, 300),
new Vector3D(-75, -35, 300),
new Vector3D(-75, 35, 300)
)
)
path.array.push (
new PathCommand (
PathCommand.LINE,
new Vector3D(-75, 35, 300),
new Vector3D(-75, 35, 300),
new Vector3D (75, 35, 300)
)

|])i ™ |

Again we create a new PathAlignModifier object, supplying the text 3D object and
the path that it should be aligned to, and then call the execute () function to make
the changes.

var aligner:PathAlignModifier =
new PathAlignModifier (text, path);
aligner.execute() ;

}
The followCurve () function will create a single curve to align the text 3D object.

protected function followCurve () :void

{

setupText () ;

var path:Path = new Path() ;

[283]

Creating 3D Text

Just like with the straight line path we created above, the curve is defined by adding
a PathCommand object to the array property of the path class. We specify the type of
the PathCommand using the PathCommand . CURVE constant, and then define the curve
using a start, modifier, and end point.

path.array.push (
new PathCommand (
PathCommand.CURVE,
new Vector3D(-75, -45, 300),
new Vector3D(0, 50, 300),
new Vector3D(75, 0, 300)
)
) ;

This will define a curve that looks the like the following image:

(0,50, 300)
L]

(75,0, 300)

{-75,-45, 300)

Again, we create a new pPathAlignModifier object, and call it's execute () function.

var aligner:PathAlignModifier =
new PathAlignModifier (text, path);
aligner.execute() ;
}
}
}

When the application is run you can press the 1, 2, and 3 keys on the keyboard to see
the results of warping a text 3D object along the three different types of paths.

[284]

Chapter 10

Summary

It is possible in Away3D to create text 3D objects and then manipulate them in

a variety of ways. This chapter covered how to embed a true-type font file in a
SWE that could then be used by the swfvector library. We then looked at a simple
application that created a flat text 3D object within the scene.

These text 3D objects can be warped in a variety of interesting ways by aligning
them to a path. A sample application was presented that aligned a text 3D object
to a variety of paths made with both curves and straight lines.

We also saw how to give the 3D text object some depth with one of the many
extrusion classes available in Away3D. In the next chapter, we will look at more
of these modifier classes, and how they can be used to programmatically create
additional custom 3D objects.

[285]

11

Extrusions and Modifiers

As we have seen, there are many ways to create a 3D object in Away3D.

Chapter 2, Creating and Displaying Primitives, covered the creation of a 3D object from
its base components. That same chapter also covered a number of primitive 3D
objects available in the away3d.primitives package. Then in Chapter 6, Models and
Animations, we looked at how 3D objects are created by loading external model files.
Finally, in Chapter 10, Creating 3D Text, we saw how text 3D objects can be created.

In addition to these methods, Away3D also has the ability to create and manipulate
3D objects programmatically using classes from the away3d.extrusions and
away3d.modifiers packages. In fact, we have already seen one of these classes,
TextExtrusion, at work in Chapter 10, Creating 3D Text, where it was used to give
depth to a flat text 3D object.

Although creating objects in this manner is not as flexible as creating them in a
3D modeling application, it is possible to create a wide variety of 3D shapes using
just a few lines of code.

This chapter will cover the following topics:

e Creating a flag with the PathExtrusion class
e Creating walls with the LinearExtrusion class
e Creating a vase with the LatheExtrusion class

¢ Creating terrain with the SkinExtrusion or Elevation and
HeightMapModifier classes

e Skimming the surface of a terrain 3D object with the ElevationReader class

Extrusions and Modifiers

Creating a flag with the PathExtrusion
class

The pathExtrusion class, from the away3d.extrusions package, can be used to
extend a cross section along a path. This cross section is known as a profile, and

is defined as an array of Vector3D objects. In practice, it works much the same
way as the TextExtrusion class that was introduced in Chapter 10, Creating 3D
Text, by adding depth to an initial flat surface. But whereas the TextExtrusion
class will extend a flat text 3D object perpendicular to the surface of the text, the
PathExtrusion class can extend a surface along the length of a path object, which
can be a series of straight lines or a Bezier curve. This makes the PathExtrusion
class ideal for creating 3D objects like ribbons and flags.

To demonstrate the pPathExtrusion class, we will create an application called
PathExtrusionDemo, which will create a simple flag 3D object.

package

{
import away3d.core.geom.Path;
import away3d.core.utils.Cast;
import away3d.extrusions.PathExtrusion;
import away3d.materials.BitmapMaterial;
import flash.geom.Vector3D;

public class PathExtrusionDemo extends Away3DTemplate

{

[Embed (source="away3dlogo.jpg")]
protected var Away3DLogo:Class;

public function PathExtrusionDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;

To get a good view of the flag 3D object we will be creating, the camera is positioned
along the Y and Z axes, and then we use the 1ookat () function to orient the camera
so that it is looking back at the scene's origin.

camera.position = new Vector3D(0, 500, 500);
camera.lookAt (new Vector3D(0, 0, 0));

[288]

Chapter 11

Here we create a new path object. If you recall from Chapter 10, Creating 3D Text, a
path contains a number of PathSegment objects, which in turn are defined by three
positions in space: the beginning, a control point, and the end. In this example,

we are creating a Path object that will contain two pathSegment objects. The first
pathSegment object is defined by the first three vector3D objects in the array
supplied to the Path constructor, and the second PathSegment object is defined by
the last three Vector3D objects in the array. The resulting path object looks like the
following image:

PathSegment 1 Control
(-100,0,75)

PathSegrment 1 Start PathSegment 1 End
(-150,0,0) (0,0.0)

PathSegment 2 End
(150, 0, 0)

PathSegment 2 Start
(0,0,00

PathSegment 2 Control
(100, 0,-75)

var path:Path = new Path(
[

new Vector3D

150,
new Vector3D 00

’

new Vector3D(0, O,
0, O,
100, 0, -75),

150, 0, 0)

(
(
(
new Vector3D (
new Vector3D (
new Vector3D (

1
)i

The cross section, or profile, is defined as an array of vector3D objects. In this case,
the profile is simply a vertical line 200 units in height.

var profile : Array =
[
new Vector3D(0, -100, O0),
new Vector3D(0, 100, 0)
1:

[289]

Extrusions and Modifiers

We then use the path object and profile to create a new pathExtrusion object. The
subdivision init object parameter is used to define the detail of the resulting

3D object, with higher values resulting in the final 3D object being constructed
using more triangle faces, which produces a smoother appearance.

var extrusion:PathExtrusion = new PathExtrusion(
path,
profile,
null,
null,
{
material: new BitmapMaterial (Cast.bitmap (Away3DLogo)),
bothsides: true,
subdivision: 10
}
) ;

The resulting PathExtrusion object is then added to the scene.

scene.addChild (extrusion) ;

}

The following screenshot shows the output of this application:

'Adobe Flash Player 10

File Wew Control Help

[290]

Chapter 11

Creating walls with the LinearExtrusion

class

The LinearExtrusion class is used to create solid rectangular 3D objects from a
profile made up of one or more straight lines. This is useful for creating walls where
a number of lines are used to define the "floor plan" of a structure. In the following
LinearExtrusionDemo application, we will use the LinearExtrusion class to build
a 3D object that could represent the walls in an L-shaped house.

package
{
import
import
import

public

{

away3d.extrusions.LinearExtrusion;
flash.events.Event;
flash.geom.Vector3D;

class LinearExtrusionDemo extends Away3DTemplate

protected var walls:LinearExtrusion;

public function LinearExtrusionDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene () ;

camera.position = new Vector3D(1000, 750, 1000);
camera.lookAt (new Vector3D(0, 0, 0));

[291]

Extrusions and Modifiers

The wallpPoints array is a collection of points that define a number of connected
lines. These lines define the base outline of the walls that will make up our 3D object.
The end point of the last line is used as the starting point of the next line. The points
used in the following code define a profile that looks like the following image:

(-250,0,-250)

(0,0,-250)

(-250,0, 250,

(250,0,0)

(250.0.250)

var wallPoints:Array =
new Vector3D(-250, 0, -250),

0, 0, -250),

Ol Ol O)l

(
new Vector3D(
(

new Vector3D(250, 0, 0),
(
(
(

new Vector3D

new Vector3D(250, 0, 250),
-250, 0, 250),
-250, 0, -250)

new Vector3D
new Vector3D

1;

Here we create a new LinearExtrusion object. The offset init object parameter
defines the height of the walls, while the thickness parameter defines their width.
The recenter parameter is used to ensure that the origin of the resulting 3D object
is at its center.

walls = new LinearExtrusion (
wallPoints,
thickness:10,
offset: 150,
recenter:true

[292]

Chapter 11

}
)i

scene.addChild (walls) ;

}
}

}

The following screenshot shows the output of this application:

Adobe Flash Player 10

File Wiew Control Help

Creating a vase with the LatheExtrusion
class

Lathing is a process used by carpenters that involves carving a piece of wood as it is
spun around by a machine called a lathe. Lathing can be used to create objects like
bowls, vases, posts, or any other object whose profile does not change as it spins
around a central axis. Such objects are said to have axial symmetry.

[293]

Extrusions and Modifiers

These 3D objects can be created in Away3D using the LatheExtrusion class, which
will take a profile and rotate it around an axis (the Y axis by default) to produce a
solid 3D object. The following LatheExtrusionDemo will use the LatheExtrusion
class to create a simple vase 3D object.

package
import away3d.extrusions.LatheExtrusion;
import flash.geom.Vector3D;

public class LatheExtrusionDemo extends Away3DTemplate

{

protected var vase:LatheExtrusion;

public function LatheExtrusionDemo ()

{

super () ;

}

protected override function initScene () :void

{

super.initScene () ;

camera.position = new Vector3D(0, 500, 500);
camera.lookAt (new Vector3D(0, 0, 0));

Here is the profile that will be passed to the LatheExtrusion class. You will notice
that the x coordinates of the points that make up the profile are all positive, and do
not cross over the Y axis (remember that the Y axis is the default axis around which
the profile will be rotated). This ensures that the profile does not intersect itself as
it is rotated. It is generally a good idea to ensure that the profile supplied to the
LatheExtrusion class does not cross the axis around which it will be rotated.

[294]

Chapter 11

(50, 200, 0

{40, 150, 0

{60, 120, 0}

[40,0,0)

Just as with the LinearExtrusion class, the profile is defined as an array of
Vector3D objects.

var profile : Array = [
new Vector3D(50, 200, 0),
new Vector3D(40, 150, 0),
new Vector3D(60, 120, 0),
new Vector3D(40, 0, 0)

1;

We then create a new instance of the LatheExtrusion class. The centerMesh init
object parameter is used in much the same way as the recenter init object parameter
described for the LinearExtrusion class.

We also need to set the £11ip init object parameter to true to orient the triangle
faces that make up the resulting 3D object so that they are visible from our camera's
point-of-view. If we left the £1ip parameter at its default value of false, we would
end up looking straight through the outside edge of the vase.

[295]

Extrusions and Modifiers

\ The code documentation for the LatheExtrusion constructor

‘Q actually lists recenter as a valid init object parameter. This is

incorrect. The LatheExtrusion constructor will not process the
recenter init object parameter.

vase = new LatheExtrusion (
profile,
{
subdivision: 12,
centerMesh: true,
thickness: 10,
flip: true

!
)i
scene.addChild (vase) ;

}

The following screenshot shows the output of this application:

I

Adobe Flash Player 10

File Miew Control Help

[296]

Chapter 11

Creating terrain with the SkinExtrusion
class

Unlike the preceding extrusion classes, the SkinExtrusion class does not extend
a profile by creating additional dimensions. Instead, it takes an array of individual
points and uses them to define the vertices of a 3D object that can be added to the
scene. On the surface there does not seem to be a great deal of benefit to using

the skinExtrusion class over manually creating a mesh, like we did in Chapter

2, Creating and Displaying Primitives. In practice however, the points used by

the skinExtrusion class are generated by another class called Elevation. The
Elevation class, in turn, takes an image, called a height map, the individual pixel
colors of which are used to plot the heights of a collection of points over a plane.

You can see how this works in the following image. The black and white plane is
textured with the same height map used to plot the height of the red points above
it. You will notice that the points occupy a higher position over the brighter areas
of the height map.

In the skinExtrusionDemo application, we will use the height map (on the left side
of the following image) and texture (on the right side) to create a 3D object that looks
like an outdoor terrain.

[297]

Extrusions and Modifiers

\
‘Q You can use the free T2 application from http: //www.toymaker.

info/html/texgen.html to create realistic textures from a height map.

package

{
import away3d.core.utils.Cast;
import away3d.extrusions.Elevation;
import away3d.extrusions.SkinExtrude;
import away3d.materials.BitmapMaterial;
import flash.geom.Vector3D;

public class SkinExtrusionDemo extends Away3DTemplate

{

The height map and the texture image files are embedded for easy access.

[Embed (source="heightmap.jpg")]
protected var Heightmap:Class;

[Embed (source="terrain.jpg")]
protected var Terrain:Class;

protected var extrude:SkinExtrude;

public function SkinExtrusionDemo ()

{

super () ;

protected override function initScene() :void

{

super.initScene () ;

camera.position = new Vector3D(400, 200, 400);
camera.lookAt (new Vector3D(0, 0, 0));

var terrainMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (Terrain)) ;

Before we can use the skinExtrusion class, we first need to create an instance of the
Elevation class.

var elevation:Elevation = new Elevation() ;

[298]

Chapter 11

We then use the generate () function to create the multidimensional array of
Vector3D objects that will be used by the skinExtrusion class. The second through
to the sixth parameters passed to the generate () function are the same as the
default values defined by the function.

The first parameter specifies the BitmapData object that represents the height map.

The second parameter defines the color channel that will be read to determine the
height of the resulting points. We supply the string "r" to indicate that we are
reading the red colour of the pixels.

M Since our height map is a gray scale image, where the red, green, and
Q blue color values are all the same for any given pixel, it would make no
difference which color channel the generate () function reads from.

The third and fourth parameters define how many samples will be read from the
height map along the width and height of the height map, respectively. Higher
values here result in a more detailed 3D object.

The fifth and sixth parameters define the scale of the plane over which the points
will be positioned. The default is 1, which means the plane will have the same
dimensions as the height map.

For the seventh parameter, we have not used the default parameter value. It is used
to scale the height of the terrain, whose points by default have a maximum height
of 255 units. The default value for the scale is 1, but since we have supplied a scale
value of 0.25, our terrain 3D object will have a maximum height of one quarter of
the default.

var verticies:Array =
elevation.generate (
Cast .bitmap (Heightmap) ,
nypn,
16,
16,

)i

We now use this array to generate a new skinExtrude 3D object.

[299]

Extrusions and Modifiers

The coverall init object parameter is set to true to ensure that any material applied
to it covers the entire resulting 3D object. Like the LinearExtrusuion class, the
recenter parameter will adjust the positions of the vertices that make up the 3D
object so the origin of the mesh is at its center. This recentering process also takes
the height of the 3D object into account, meaning that when recenter is true, the
highest point of the 3D object will be above the local origin of the 3D object, and

the lowest point will be below it. You can see the local origin of the recentered
SkinExtrude 3D object by the position of the black dot in the following image:

If recenter was false, as it is by default, the origin of the mesh would be at one
of the corners, and all of its vertices would be above the origin. In the following
image, the black dot shows the local origin of a SkinExtrude 3D object that has
not been recentered.

extrude = new SkinExtrude (verticies,

{

coverall: true,
material: terrainMaterial,
recenter: true,

[300]

Chapter 11

bothsides: true

}
)i

The points returned by the generate () function lie over a plane whose edges are
parallel to the X / Y axes. When these points are passed to the SkinExtrude class,
you will in effect create a 3D object that looks like a bumpy vertical wall. By rotating
the 3D object by 90 degrees around the X axis, we will orient it so it looks like it
represents the ground.

extrude.rotationX = 90;

Setting the recenter property to true will reposition the 3D object. Here we simply
set its position back to the origin of the scene.

extrude.x = extrude.y = extrude.z = 0;

scene.addChild (extrude) ;

}
}
}

The following screenshot shows the result of this application:

rg

Adobe Flash Player 10

File Miews Conbrol Help

[301]

Extrusions and Modifiers

Reading the height of a terrain surface
with the ElevationReader class

When using a 3D object created with the skinExtrusion class, it is very common to
need to find the height of the surface at a given point. For example, you may want
to ensure that a 3D object representing a car is positioned so that it appears above

a skinExtrusion 3D object, simulating the car driving across some terrain. The
ElevationReader class can be used for this purpose. When it is created with the
same height map supplied to an Elevation object, the getLevel () function returns
the corresponding height of points returned by the Elevation generate () function.
This value can then be used to position 3D objects relative to a SkinExtrusion

3D object.

The following ElevationReaderDemo application shares much of its code with the
SkinExtrusionDemo application. Some additional code has been introduced to
create a ElevationReader object, which we use to modify the height of a sphere
as it moves randomly across the surface of a skinExtrusion 3D object.

package

{

import away3d.core.utils.Cast;

import away3d.extrusions.Elevation;
import away3d.extrusions.ElevationReader;
import away3d.extrusions.SkinExtrude;
import away3d.materials.BitmapMaterial;
import away3d.primitives.Sphere;

import com.greensock.TweenlLite;

import flash.events.Event;

import flash.geom.Vector3D;

public class ElevationReaderDemo extends Away3DTemplate
{

[Embed (source="heightmap. jpg")]

protected var Heightmap:Class;

[Embed (source="terrain.jpg")]
protected var Terrain:Class;

protected var extrude:SkinExtrude;
protected var sphere:Sphere;
protected var elevationreader:ElevationReader;

[302]

Chapter 11

public function ElevationReaderDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene () ;

camera.position = new Vector3D(400, 200, 400);
camera.lookAt (new Vector3D(0, 0, 0));

var terrainMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (Terrain)) ;

var elevation:Elevation = new Elevation() ;
var verticies:Array =
elevation.generate (
Cast.bitmap (Heightmap) ,
nyn,
16,
16,

extrude = new SkinExtrude (verticies,

{

coverall: true,

material: terrainMaterial,
recenter:true,

bothsides: true

}
)i

extrude.rotationX = 90;
extrude.x = extrude.y = extrude.z = 0;

scene.addChild (extrude) ;

The process of creating an ElevationReader object is very similar to creating an
Elevation object. First a new instance of the ElevationReader class is instantiated.

elevationreader = new ElevationReader () ;

[303]

Extrusions and Modifiers

We then call the traceLevels () function, supplying exactly the same parameters we
supplied to the Elevation generate () function. It is important that the parameters
passed to the generate () and traceLevels () functions are the same, because this
ensures that the values returned by the getLevel () function below are consistent
with the height of the skinExtrude 3D object.

elevationreader.traceLevels (
Cast .bitmap (Heightmap) ,
npn,
16,
16,

)i
We then create a sphere that we will move randomly across the surface of the terrain.

sphere = new Sphere ({radius: 10});

scene.addChild (sphere) ;

Finally, we call the movesphere () function to kick off the tweening operation.

moveSphere () ;

}

override protected function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

Every frame we adjust the height of the sphere to match the height of the terrain,
which is determined by calling the getLevel () function.

We supply the position of the sphere along the X and Z axes as the first two
parameters. This may seem confusing at first when you consider that these
parameters are actually called x and y. The reason we supply the spheres position
on the Z axis to the y parameter is because the skinExtrude 3D object was rotated
90 degrees around the X axis. Unfortunately, the ElevationReader class does not
have the same ability to be rotated, which means we need to manually translate the
movement of the sphere along the Z axis in world space into vertical movement
along the Y axis in the local space of the ElevationReader.

The third parameter is used to apply an offset to the height returned by the
getLevel () function.

[304]

Chapter 11

If you look back at the code used to create the skinExtrude 3D object, you will
notice that the recenter init object parameter is set to true. This has the effect of
setting the origin of the skinExtrude 3D object to its center, as opposed to one of its
corners. This also means that the lowest point of the skinExtrude 3D object (that is,
the points that relate to the darkest areas on the corresponding height map) will be
below this centre point, while the highest point will be above the centre.

We don't need to adjust for the centering of the SkinExtrude 3D object when
supplying the x and y parameters to the getLevel () function, as these values are
assumed to be centered. However, the value returned by the getLevel () function is
always positive —it does not take into account the effect that the centering has on the
relative height of the skinExtrude 3D object. This is why we calculate the of fset by
first subtracting 255 * 0.25 * 0.5, which will adjust the returned value so it relates
to the actual minimum height of the matching skinExtrude 3D object (remember
that the maximum height of the skinExtrude 3D object is 255 units, which we scaled
by 0.25, and then centered it, which dropped the position of the terrain by half its
height). We then add the radius of the sphere to ensure the bottom of the sphere is
above the skinExtrude 3D object.

If the SkinExtrude recenter init object parameter was set to false,
we would need to adjust the values supplied to the x and y parameters
A like so (where 128 is half the width and depth of the terrain):

~ sphere.y = elevationreader.getLevel (
sphere.x + 128,
-sphere.z + 128,

sphere.radius

)i

sphere.y = elevationreader.getLevel (
sphere.x,
-sphere.z,
-255 * 0.25 * 0.5 + sphere.radius
) ;
}

The movesphere () function is used to set up a recursive tweening operation that will
move the sphere to a random position over the terrain.

protected function moveSphere () :void

{

TweenLite.to (sphere, 2,
{
x: Math.random() * 256 - 128,
z: Math.random() * 256 - 128,

[305]

Extrusions and Modifiers

By setting the onComplete parameter to recursively call the moveSphere () function,
we are ensuring that the sphere will continuously move to random points.

onComplete: moveSphere

When this application is run, you will see that the sphere remains above the terrain
as it moves across its surface.

B

| # 'adobe Flash Player 10

File: Wiew Control Help

HeightMapModifier

We have seen how a height map can be used to modify the height of a planar surface
with the SkinExtrusion / Elevation classes. The HeightMapModifier class uses
the same principle, but instead of being limited to modifying the height of a planar
surface, it can be used to modify the surface height of any 3D object, be it a flat 3D
object like a plane, a solid 3D object like a sphere, or a complex 3D object loaded
from an external model file. It does this by repositioning the vertices of a 3D object
along their normal vector (a normal vector is simply a vector that is perpendicular
to a surface).

[306]

Chapter 11

Take a look at the following height map:

The HeightMapModifierDemo application will apply this height map to a sphere
to create what could be a cratered moon or asteroid.

package

{

import
import
import
import
import
import

public

{

away3d.core.utils.Cast;
away3d.materials.utils.HeightMapDataChannel;
away3d.modifiers.HeightMapModifier;
away3d.primitives.Plane;
away3d.primitives.Sphere;
flash.geom.Vector3D;

class HeightMapModifierDemo extends Away3DTemplate

[Embed (source="sphere.jpg")]

protected var SphereTex:Class;

protected var sphere:Sphere;

public function HeightMapModifierDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene () ;

[307]

Extrusions and Modifiers

camera.position = new Vector3D(0, 0, 500);
camera.lookAt (new Vector3D(0, 0, 0));

sphere = new Sphere (
segmentsW: 32,
segmentsH: 32

)

scene.addChild (sphere) ;

To apply the height map to our sphere 3D object, we first need to create a new
instance of the HeightMapModifier class. We supply the 3D object that we will be
modifying, the height map, the color channel to read from the height map, and the
maximum distance to vary the surface of the 3D object by.

There is some inconsistency between the types used to define
a color channel. We saw previously that the Elevation and

M ElevationReader classes take a string to define a color
channel. The HeightMapModifier class is a little different,
taking instead a unit. Here we use one of the constant values
defined in the HeightMapDataChannel class to specify that the
HeightMapModifier class should read the red color channel.

var modifier:HeightMapModifier = new HeightMapModifier (
sphere,
Cast .bitmap (SphereTex) ,
HeightMapDataChannel .RED,
16
)i

The execute () function will then actually modify our sphere 3D object.

modifier.execute() ;
}
}
}

[308]

Chapter 11

The following screenshot shows the end result:

Adobe Flash Player 10
File Wiew Contral Help

You may notice that the HeightMapModifier class will use a height map in the
opposite manner to the Elevation class. The brighter areas in a height map used by
the HeightMapModifier class will actually result in a depression when applied to

a 3D object, instead of an increased height as is the case with the Elevation class.
The simple way around this is to supply a value of -1 to the scale parameter in the
HeightMapModifier constructor, like so:

var modifier:HeightMapModifier = new HeightMapModifier (
sphere,
Cast .bitmap (SphereTex) ,
HeightMapDataChannel .RED,
16,
-1

[309]

Extrusions and Modifiers

This change reverses the sign of the values read from the height map (that is, positive
values become negative), and produces the following result:

=

£ Adobe Flash Player 10

File Wiew Contral Help

Summary

The extrusion and modifier classes in Away3D can be used to quickly create complex
3D objects to represent objects like terrain, walls, flags, ribbons, and more. The
PathExtrusion, LinearExtrusion, and LatheExtrusion classes will extend a base
profile along a path or around an axis, while the skinExtrusion class can be used

in conjunction with the Elevation class to create a 3D object from a height map.

We also looked at the ElevationReader class, which provides a convenient way
to determine the height of a SkinExtrusion 3D object. A sample application was
shown that used the ElevationReader class to move a sphere over the surface
or a SkinExtrusion 3D object.

Finally, we covered the HightMapModifier class, which will use a height map
to apply a deformation to any 3D object.

In the next chapter, we will take a look at how to add visual effects to an Away3D
application, using both the Flash filter classes, and those that are included as part
of Away3D.

[310]

12

Filters and Postprocessing
Effects

Away3D supports a number of methods for displaying effects. As a Flash developer,
you are probably already familiar with the standard Flash filter classes from the
flash.filters package. Away3D supports the use of these classes, and they can

be applied to individual 3D objects, or the entire view, to display effects like a blur
effect, glow effect, and drop shadows. And thanks to the new functionality provided
by the latest version of Flash, filters can also be applied using Pixel Bender shaders
and the shaderFilter class.

In addition to the filter classes provided by Flash, Away3D includes a FogFilter
class. This class can be used to apply a fog-like effect to the scene, while also offering
some performance benefits.

Finally, we will see how to make use of the BitmapSession class and the various
functions available in Flash to manipulate bitmap images to create a custom effect.

This chapter covers the following topics:

e Applying the Flash filter classes to individual 3D objects, and the entire view
¢ Applying Pixel Bender shaders using the shaderFilter class
e Using the FogFilter class

e Anexample of how to use the BitmapSession class can be used to create
a custom effect

Filters and Postprocessing Effects

Flash and Away3D filters

Both Away3D and Flash define classes called filters that can be used to apply visual
effects. Despite both being referred to by the same name, there are significant
differences between the two.

The Flash filters

Since Flash Player 8 developers have had access to a number of standard filters
that can be applied to DisplayObject objects via their filters property, and the
introduction of Pixel Bender in Flash Player 10 allows an almost unlimited variety
of filters to be created and applied using the shaderFilter class.

Because each 3D object within an Away3D scene is eventually displayed on the
screen by an object that extends the DisplayObject class, the standard Flash filters
can be applied to them. This allows for some interesting effects to be created with
very little code.

Applying filters

The standard Flash filters can be applied to any individual 3D object whose
ownCanvas property is set to true. The ownCanvas property was covered in

Chapter 4, Z-Sorting, where it was used to draw a 3D object into its own canvas for
the purposes of forcing its sorted depth within the scene. This canvas, as we noted
previously, extends the DisplayObject class, which means it can have a Flash filter
applied to it. In this way, we can selectively apply the Flash filter effects to individual
3D objects of our choosing.

The Flash filter effects can also be applied to all visible 3D objects at once by
assigning them to the view3D object.

Let's create an application called ownCanvasDemo to demonstrate how filters can be
applied to individual and all 3D objects.

package

{
import away3d.containers.ObjectContainer3D;
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;
import away3d.loaders.Max3DS;
import away3d.materials.BitmapMaterial;
import flash.display.BitmapDataChannel;
import flash.display.Shader;
import flash.events.Event;
import flash.events.KeyboardEvent;

[312]

Chapter 12

The classes imported from the flash. filters package will be used to apply the
various effects that this application will demonstrate.

import
import
import
import
import
import
import
import

public

{

flash.
flash.
flash.
flash.
flash.
flash.
flash.
flash.

class

filters
filters
filters
filters
filters

filters.

.BitmapFilterQuality;
.BlurFilter;
.DisplacementMapFilter;
.DisplacementMapFilterMode;
.GlowFilter;

ShaderFilter;

geom. Point;
text.TextField;

OwnCanvasDemo extends Away3DTemplate

PBJ files are compiled Pixel Bender shaders. The cross-stitch shader used in this
example was downloaded from the Adobe Pixel Bender Exchange (http://www.
adobe.com/cfusion/exchange/index.cfm?event:productHome&exc=26),wﬂﬁch
is a website run by Adobe that provides a number of Pixel Bender shaders. Here we
have embedded the crosstitch.pbj file as a raw data file.

[Embed (source="crossstitch.pbj", mimeType="application/octet-

stream")]

protected var PixelBenderShader:Class;

We also embedded a number of other files, including a 30s model file and two
texture image files.

[Embed (source="ship.3ds", mimeType="application/octet-stream")]

protected var ShipModel:Class;

[Embed (source="ship.jpg")]

protected var ShipTexture:Class;

[Embed (source="displacementmap.jpg")]

protected var DisplacementMap:Class;

The filterText property will be used to reference a TextField object, which will
be used to display the name of the currently applied filter.

protected var filterText:TextField;

[313]

Filters and Postprocessing Effects

We will create two 3D objects: one will have the filters applied to it, while the other
will be an unmodified control. This allows a 3D object that has a filter applied to it

to be easily compared with the original 3D object.

protected var shipModel:ObjectContainer3D;
protected var shipModel2:0bjectContainer3D;

public function OwnCanvasDemo ()

{

super () ;

}

The TextField object referenced by the filterText property is initialized in the

initUI () function.

protected override function initUI () :void
{

super.initUI () ;

filterText = new TextField() ;

filterText.x = 10;

filterText.y = 10;

filterText.width = 300;

this.addChild (filterText) ;

}

protected override function initListeners() :void

super.initListeners () ;

stage.addEventListener (KeyboardEvent .KEY UP, onKeyUp) ;

}

The initScene () function is used to create and display two 3D objects. The process
of loading a 3D object from an external model file is described in more detail in

Chapter 6, Models and Animations.

protected override function initScene () :void

{
super.initScene () ;
this.camera.z = 0;
var shipMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (ShipTexture)) ;
shipModel = Max3DS.parse (Cast.bytearray (ShipModel) ,

scale: 0.15,
z: 500,
x: 75,

autoLoadTextures: false,

[314]

Chapter 12

By setting the ownCanvas init object parameter to true, we are in fact giving this
3D object its own Render Session object to be drawn into. This will allow us to apply
filters to this individual 3D object, without affecting other 3D objects in the scene.

ownCanvas: true
}
)i
for each (var child:Mesh in shipModel.children)
child.material = shipMaterial;
scene.addChild (shipModel) ;

A second 3D object is created. As this 3D object will not have any filters applied to it,
we do not need to set the ownCanvas init object parameter.

shipModel2 = Max3DS.parse (Cast.bytearray (ShipModel),
{
scale: 0.15,
z: 500,
xX: -75,
autoLoadTextures: false
}
)i
for each (child in shipModel2.children)
child.material = shipMaterial;
scene.addChild (shipModel?2) ;

Calling the clearFilters () function will start the application with no
filters applied.

clearFilters () ;

}

The onkeyUp () function is called when a key on the keyboard is released. We will
use it to apply the various filters that this application demonstrates.

protected function onKeyUp (event:KeyboardEvent) :void

{

switch (event.keyCode)
{
case 49: // 1
clearFilters() ;
break;
case 50: // 2
applyBlurFilter () ;
break;
case 51: // 3

[315]

Filters and Postprocessing Effects

applyDisplacementMapFilter () ;

break;

case 52: // 4
applyGlowFilter () ;
break;

case 53: // 5
applyShaderFilter () ;
break;

case 54: // 6
applyViewBlurFilter () ;
break;

}
}

The onEnterFrame () function is used to rotate each of the 3D objects around within
the scene.

protected override function onEnterFrame (event:Event) :void
super.onkEnterFrame (event) ;
shipModel.rotationX = shipModel2.rotationX += 2;
shipModel.rotationY = shipModel2.rotationY += 1;

}

The clearFilters () function assigns an empty array to the filters property,
which is defined by the object3D class, on both the view and the 3D object
referenced by the shipModel variable. This has the effect of removing any
filters that may have been applied.

B Despite having the same name, the filters property defined by the
Object3D class is not the same as the filters property defined by
the DisplayObject class (the Object3D class does not extend the
M DisplayObject class). However, the two properties can be used in
Q much the same way. When the ownCanvas property for a 3D object is set
to true, the array supplied to the filters property will be eventually
applied to the filters property of the Render Session object used to
draw that 3D object to the screen, making the result of the filter(s) (or lack
— thereof) visible on the screen. -

protected function clearFilters() :void
{
filterText.text = "None";
shipModel.filters = [];
view.session.filters = [];

[316]

Chapter 12

Applying the BlurFilter

The applyBlurFilter () function is used to blur the 3D object using the BlurFilter
class. The BlurFilter class can be used to create the appearance of 3D object that is
out of focus or obscured by fog.

protected function applyBlurFilter () :void

{

The TextField object is updated to reflect the filter that is currently being applied.
filterText.text = "BlurFilter";

A new instance of the BlurFilter class is assigned to an array, which in turn is
assigned to the 3D objects filters property.

The first two parameters passed to the BlurFilter constructor, blurX and blury,
define the amount of horizontal and vertical blur respectively.

The third parameter, quality, is used to define how many times the blur effect is
applied. The BitmapFilterQuality class defines three constant values, Low, MEDIUM,
and HIGH, although you can directly supply an int value up to 15. The lower the
value, the faster the effect will be rendered.

1
‘\Q The array assigned to the filters property can contain more than

one Flash filter object, allowing for effects to be combined.

shipModel.filters = [
new BlurFilter (
4,
4,
BitmapFilterQuality.LOW)
1;
}

The following image shows a 3D space ship object with a blue filter applied to it:

[317]

Filters and Postprocessing Effects

Applying the DisplacementMapFilter

The applyDisplacementMapFilter () function applies an array with

anew DisplacementMapFilter object to the filters property. The
DisplacementMapFilter class is used to warp the appearance of a 3D object using
a displacement map, which is simply an image whose color values are used to offset
the position of the pixels in the original image (or in our case the 2D rendering of a
3D object) that it is applied to. This effect can be used to create a rippling effect like

a 3D object being under water or behind textured glass.

The first parameter supplied to the DisplacementMapFilter constructor,
mapBitmap, is set to a BitmapData object created from one of the embedded images.

The second parameter, mapPoint, is the location on the filtered image at which the
top-left corner of the displacement filter will be applied. You can use this if you only
want to apply the filter to part of an image, but in our case we want to apply the
effect to the whole image, so we supply a new point object, which has the default
coordinates of (0, 0).

The third and fourth parameters, componentx and componenty, define which
color channel of the displacement map image affects the X and Y position of pixels
respectively. We have used the red channel, but since our displacement map is a
gray-scale image, where the red, green, and blue color channels are all equal, the
actual choice of color channel here would make no difference to the end result.

The fifth and sixth parameters, scalex and scaley, define the multiplier value,
which specifies how strong the X and Y axis displacement is, respectively.

The seventh parameter, mode, determines what the Flash Player should
do in any empty spaces created by pixels being shifted away. The
DisplacementMapFilterMode class defines several options that can be used here.

IGNORE Will display the original pixels.

WARP (the default) Will wrap the pixels around from the other side
of the image.

CLAMP (used in this example) Uses the nearest shifted pixel.

COLOR Fills in the space with a specific color.

protected function applyDisplacementMapFilter () :void
{
filterText.text = "DisplacementMapFilter";
shipModel.filters = [
new DisplacementMapFilter (
Cast.bitmap (DisplacementMap) ,

[318]

Chapter 12

new Point (),
BitmapDataChannel .RED,
BitmapDataChannel .RED,
15,
15,
DisplacementMapFilterMode .CLAMP)
1;
}

The following image shows a 3D object with the DisplacementMapFilter class
applied to it:

Applying the GlowfFilter

The applyGlowFilter () function is used to apply a new instance of the GlowFilter
class, which surrounds the 3D object with a soft glow. This effect is great for
highlighting a selection, or to create a halo-like effect.

The first parameter supplied to the GlowFilter constructor, color, defines the color
of the glow effect.

The second parameter, alpha, defines the transparency of the glow color.

The third and fourth parameters, blurx and blury, define the amount of horizontal
and vertical glow, respectively.

protected function applyGlowFilter () :void

{
filterText.text = "GlowFilter";
shipModel.filters = [

[319]

Filters and Postprocessing Effects

new GlowFilter ((
0x4488FF,
1,
12,
12)
1:
}

The following image shows a 3D object with the GlowFilter class applied to it:

Applying Pixel Bender shaders

Pixel Bender excels when used to create filter-like effects, and can be used to create
a huge variety of effects in addition to the handful of filters included in the £1ash.
filters package. The applyShaderFilter () applies a cross-stitch shader obtained
from the Adobe Pixel Bender Exchange as a filter.

We have already seen Pixel Bender in action with some of
M the materials covered in Chapter 5, Materials, with classes
Q like Dot3BitmapMaterialF10, PhongPBMaterial, and
FresnelPBMaterial. Pixel Bender materials and shaders
are features that rely on Flash Player 10.

protected function applyShaderFilter () :void

{

filterText.text = "ShaderFilter";

[320]

Chapter 12

In order to apply a Pixel Bender shader as a filter, we need to create a Shader object.
The shader constructor takes a new instance of the class representing the embedded

PBJ file.
var shader:Shader = new Shader (new PixelBenderShader()) ;
This shader object is then passed to the constructor of a new shaderFilter object.

var shaderFilter:ShaderFilter = new ShaderFilter (shader) ;

The shaderFilter class allows us to use Pixel Bender shaders in the same manner
as the filter classes shown previously by assigning it to an array passed to the
filters property.

shipModel.filters = [shaderFilter];

}
The following image shows the effect of the cross-stick shader applied to a 3D object:

3

| Lty

A

R e
fo e

e
A
R
R

e
g

5
f
’J
o

Applying filters to the view
Filters can also be applied to the entire view instead of individual 3D objects. When
a filter is applied to the view all 3D objects will be affected, regardless of whether or

not their ownCanvas property is set to true.

[321]

Filters and Postprocessing Effects

Here we assign a BlurFilter to the view3D object, using the same method of
passing an array to the filters property. The end result of this action will be
that both the 3D objects appear blurred.

protected function applyViewBlurFilter () :void

{

clearFilters () ;
filterText.text = "View BlurFilter";
view.session.filters = [new BlurFilter()];

Away3D filters

The filters included with Away3D perform such tasks as sorting the 3D objects in
the scene, removing those mesh elements that are further than a specified distance
from the camera, or retaining only a specified number of mesh elements. In addition,
the FogFilter class can be used to apply a fog-like effect to the scene, shading

3D objects with an increasingly opaque color the further they are from the camera.

It does this by subdividing the scene and then shading each face of a 3D object
depending on which subdivision they fall in. The following image illustrates a

fog filter with seven such subdivisions:

[322]

Chapter 12

The fog filter offers a performance benefit as well, as the mesh elements that fall
behind the last segment are not rendered.

The following Away3DFilterDemo class demonstrates how the FogFilter class
can be used by applying it to a scene containing a number of cubes that are rotated
around the Y-axis. This rotation moves the individual cubes through the fog effect
created by the FogFilter class.

package

{
import
import
import
import
import
import

public

{

away3d.containers.ObjectContainer3D;
away3d.core.filter.FogFilter;
away3d.core.render.BasicRenderer;
away3d.materials.ColorMaterial;
away3d.primitives.Cube;
flash.events.Event;

class Away3DFilterDemo extends Away3DTemplate

protected var container:ObjectContainer3D;

public function Away3DFilterDemo ()

{

super () ;

protected override function initScene () :void

{

super.initScene (

) ;
this.camera.z = 0;

A container3D object is created. This will be used as the parent container of the
cubes that make up the scene.

container = new ObjectContainer3D (

) ;

z: 200

scene.addChild (container) ;

[323]

Filters and Postprocessing Effects

The scene will be made up of a number of cubes lined up in a 6 x 6 x 6 grid, for
a total of 216 cubes. Each cube is added as a child of the ObjectContainer3D
object created previously.

for (var primitveX:int = -50; primitveX <= 50; primitveX += 20)
for (var primitveY:int = -50; primitveY <= 50; primitveY += 20)
for (var primitveZ:int = -50; primitveZ <= 50; primitveZ += 20)

{

container.addChild(
new Cube (
{
X: primitveX,
y: primitvey,

z: primitveZ,

width: 10,
height: 10,
depth: 10

Here we create a new instance of the FogFilter class.

var fogFilter:FogFilter = new FogFilter(

{

The FogFilter class uses a ColorMaterial class to generate the fog effect. Here we
have created a new instance of the colorMaterial class that will display a white
color, which means the FogFilter will create a white-fog effect.

material: new ColorMaterial (0OXFFFFFF),
The minz parameter defines how far from the camera the fog effect starts.

minZ: 125,

[324]

Chapter 12

The maxz parameter defines how far from the camera the mesh element in
a 3D object can be before it is completely obscured by the fog (and therefore
not rendered at all).

maxZ: 175,

The subdivisions parameter defines how many discrete layers there are to the
fog effect. Larger values for this parameter produce a smoother appearance at the
expense of using more memory.

subdivions: 5

}
) ;

Despite being included in all the renderers available in Away3D (Chapter 4,
Z-Sorting, explains renderers in more detail), the filters property is not a part of
the base Renderer class that all the rendering classes implement. So to get access to
the filters property, we need to cast the View3D renderer property to either the
BasicRenderer or QuadrantRenderer type. Then we can assign the FogFilter class
to the filters property as part of an array.

The BasicRenderer will always append a new ZSortFilter object,
used to sort the 3D objects in the scene, to any array assigned to the
Wl filters property. The QuadrantRenderer does not append any of
~ its default filters to the supplied array. So when assigning filters to a
Q QuadrantRenderer object, it is best to add them one at a time to the
existing array, like so:

(view.renderer as QuadrantRenderer) .filters.
push (fogFilter) ;

(view.renderer as BasicRenderer) .filters = [fogFilter];

}

The container is rotated around its Y-axis. This will rotate its children in and out
of the fog, providing an effective demonstration of the effect provided by the
FogFilter class.

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;
++container.rotationY;

}

[325]

Filters and Postprocessing Effects

In the following image, you can see how the shading applied to the mesh
elements that make up the cubes increases as the distance between them
and the camera increases.

Render Sessions

By default, each mesh element is drawn to a single Render Session object. The
default Render Session object used by the view and the scene is represented by the
SpriteSession class. Because each 3D object will share its parent's Render Session
by default, this also means that each 3D object also uses the scene's SpriteSession
object as well.

Away3D also includes a Bi tmapSession class, which provides easy access to the
underlying bitmap data used to draw the Render Session to the screen. This bitmap
data can be accessed and modified to create some interesting effects.

[326]

Chapter 12

Postprocessing with the BitmapRenderSession

To demonstrate the use of the BitmapSession class, we will create an application
where we replace the default spriteSession object used by the view with a new
BitmapSession object. Since we can get access to the BitmapData object used by
the BitmapSession class to display the final result, we can use the various drawing
routines provided by the BitmapbData class to create some interesting effects.

The PostProcessingDemo application shown below will use the following process
to create a smoky effect that appears to rise off the 3D objects in the scene:

1. A copy of the last frame is transferred to a buffer.

2. The buffer is translated slightly up along the Y-axis.

3. The color of the pixels in the buffer are modified to be slightly more
transparent, and to fade into a blue-gray color.

4. The new frame is rendered.

5. The new frame is drawn on top of the buffer.

6. The buffer is drawn to the screen.

7. Go back to step 1.

package

{

import away3d.containers.ObjectContainer3D;
import away3d.core.base.Mesh;

import away3d.core.session.BitmapSession;
import away3d.core.utils.Cast;

import away3d.events.ViewEvent;

import away3d.loaders.Max3DS;

import away3d.materials.BitmapMaterial;
import flash.display.BitmapData;

import flash.events.Event;

import flash.filters.BitmapFilterQuality;
import flash.filters.BlurFilter;

import flash.geom.ColorTransform;

import flash.geom.Matrix;

import flash.geom.Point;

public class PostProcessingDemo extends Away3DTemplate
{
[Embed (source="ghip.3ds", mimeType="application/octet-stream")]
protected var ShipModel:Class;
[Embed (source="ship.jpg")]
protected var ShipTexture:Class;

protected var shipModel:ObjectContainer3D;

[327]

Filters and Postprocessing Effects

The effect relies on the image from the last frame being carried across between
frames to be used as the background for the next frame. The buffer variable will
be used to reference the BitmapData object that contains the processed copy of the
last frame.

protected var buffer:BitmapData;

To use the BitmapSession class, we need to create a new instance of it. The
BitmapSession constructor takes a single parameter that defines the scale. We have
supplied a value of 1, which means that the BitmapSession uses the same resolution
as the view.

protected var bitmapSession:BitmapSession =
new BitmapSession (1) ;

The smoke effect will be smoothed using an instance of the BlurFilter class.

protected var blur:BlurFilter = new BlurFilter() ;

The colorTransform class can be used to modify the color and transparency of the
individual pixels that make up an image. The following ColorTransform object will
increase the transparency of a color (or, more accurately, make the color less opaque)
while adding 1 to the red channel, 3 to the green channel, and 10 to the blue channel.
Modifying the color channels in this way will eventually result in a blue-gray color.

protected var fade:ColorTransform =
new ColorTransform(1, 1, 1, .99, 1, 3, 10, 0);

A number of the drawing routines used below require a Point object set to (0, 0).
It is always best to try and avoid creating new objects where possible, so we define
a new instance of the pPoint class here. If no parameters are specified for the Point
constructor it will default to the position (0, 0).

protected var point:Point = new Point () ;

For each frame, the pixels from the last frame will be translated up the screen. Note
that we are working with the Flash 2D coordinate system here. This means that
moving pixels up the screen involves decreasing their Y coordinates. The following
matrix constructor specifies the default values for all the parameters except the sixth,
which defines the translation along the Y-axis.

protected var matrix:Matrix = new Matrix (1, 0, 0, 1, 0, -1);

public function PostProcessingDemo ()

{

super () ;

}

[328]

Chapter 12

protected override function initEngine () :void

{

super.initEngine () ;

For the BitmapSession object we created to be used by the view, it has to be
assigned to the view3D session property.

view.session = bitmapRenderSession;

protected override function initScene () :void

{

super.initScene () ;
this.camera.z = 0;
var shipMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (ShipTexture)) ;
shipModel = Max3DS.parse (Cast.bytearray(ShipModel),

{

autoLoadTextures: false,
scale: 0.2,
z: 500
}
)i
for each (var child:Mesh in shipModel.children)
child.material = shipMaterial;
scene.addChild (shipModel) ;

protected override function initListeners() :void

{

super.initListeners () ;

The second half of the effect is processed once the current frame has been rendered
(that is, after the onEnterFrame () function has been called). For this, we register the
onRenderComplete () function to be called when the ViewEvent . RENDER COMPLETE
event is dispatched. We could also have achieved the same result by performing the
postprocessing once we had called the Away3DTemplate onEnterFrame () function
(by calling super.onEnterFrame ())

view.addEventListener (
ViewEvent. RENDER COMPLETE,
onRenderComplete

)i

override protected function onEnterFrame (event:Event) :void

{

[329]

Filters and Postprocessing Effects

The first half of the effect is processed before the current frame is rendered.
Normally in the onEnterFrame () function, we start by immediately calling the
onEnterFrame () function from the base class. In this case though we want to get
access to the last frame that was rendered before the view clears the screen and
renders the next frame. So we don't call super.onEnterFrame (event) right away.

We start by rotating the 3D object in the scene.

shipModel .rotationX += 2;
shipModel .rotationY += 1;

The first half of the effect involves taking the bitmap data from the last frame and
drawing it to a buffer using a slight vertical offset and color transformation.

We need to get a copy of the bitmap data from the last frame rendered. This is done
using the BitmapSession.getBitmapData () function, which takes the current view
object as a parameter.

var bitmapSessionData:BitmapData =
bitmapSession.getBitmapData (view) ;

If this is the first time a frame has been rendered (that is, buf fer is null), the buffer
is created to be the same size as the BitmapSession bitmap data by supplying
bitmapSessionData.width and bitmapSessionData.height as the first two
parameters of the BitmapData constructor.

if (buffer == null)
{
buffer = new BitmapData (
bitmapSessionData.width,
bitmapSessionData.height,
true,
0);

}

The buffer content is cleared by drawing a blank rectangle over the buffer.

buffer.fillRect (buffer.rect, 0);

The contents of the current frame is copied to the buffer using the BitmapData
draw () function.

The first parameter, source, is the data source to copy from, which is set to the
BitmapData object we retrieved from the BitmapSession and assigned to the
bitmapSessionData variable.

[330]

Chapter 12

The second parameter, matrix, is a matrix that can be used to transform the source
data as it is copied. The matrix object supplied here translates the individual pixels
up the screen by one.

The third parameter, colorTransform, is a ColorTransform object. The fade
variable references a ColorTransform object that will convert the pixels to a blue
color and decrease their alpha component, which has the effect of making them
more transparent.

buffer.draw(bitmapSessionData, matrix, fade) ;

Finally, we use the BlurFilter object, referenced by the blur variable, to apply a
blur effect to the buffer. This is done using the BitmapData applyFilter () function.

The first parameter, sourceBitmapData, is the bitmap data source to apply the effect
to. We have supplied the buffer itself.

The second parameter, sourceRrect, defines the area within the bitmap data source
to use as the input. We want to apply the effect to the whole image, so we supply the
buffers rect property.

The third parameter, destPoint, defines the point within the destination image that
corresponds to the upper-left corner of the source rectangle. This will always be the
point (0, 0). For this we use the default Point object we created earlier.

The fourth parameter, £ilter, defines the filter object that you use to perform the
filtering operation. We have supplied the previously created BlurFilter object
referenced by the blur variable.

buffer.applyFilter (buffer, buffer.rect, point, blur);

Now that we have captured and modified the last frame, we can go on to render the
next frame.

super.onEnterFrame (event) ;

}
The second half of the effect is processed once the current frame has been rendered.

protected function onRenderComplete (event:ViewEvent) :void

{
Once again we need to get a reference to the bitmap data of the BitmapSession object.

var bitmapSessionData:BitmapData =
bitmapSession.getBitmapData (view) ;

[331]

Filters and Postprocessing Effects

This bitmap data is copied, or cloned, into a new BitmapData object that is assigned
to the postProcess variable.

var postProcess:BitmapData = bitmapSessionData.clone() ;
The current frame is drawn on top of the processed copy of the last frame.

buffer.draw(postProcess) ;

This combined image is then drawn back into the BitmapSession, causing it to be
drawn onto the screen.

bitmapSessionData.copyPixels (buffer, buffer.rect, point) ;

}
}

The following image shows the final effect:

[332]

Chapter 12

Summary

In this chapter, we looked at the various methods by which a developer can add
effects to an Away3D application. We saw how the Flash filter classes from the
flash.filter package can be applied to an individual 3D object, or the entire
view. Example applications were presented that demonstrated the BlurFilter,
DisplacementMapFilter, and GlowFilter classes, as well as a sample Pixel Bender
shader, applied using the shaderFilter class.

In addition, we saw how the FogFilter class could be used to apply a fog-like effect
to the scene.

Finally, we looked at how the bitmap data exposed by the BitmapSession class can
be used to create some interesting custom effects, like the smoky effect shown in the
sample application.

We touched briefly on the performance benefits that can be achieved using the
FogFilter class. In the next chapter, we will take a deeper look at the techniques
that are available to get the maximum performance out of an Away3D application.

[333]

15

Performance Tips

The Flash platform has evolved over many years to provide an incredibly rich and
engaging experience that can take advantage of the latest hardware that is available.
The ActionScript Virtual Machine 2 (AVM2) introduced with Flash Player 9 offers

a number of performance improvements over the AVM1 used by previous versions
of the Flash Player, and technologies like Pixel Bender, introduced with Flash Player
10, provides developers with an even greater level of performance and flexibility.
Away3D will quite often take advantage of these features transparently, but there
are still a number of techniques that can be employed to increase the speed and
responsiveness of an Away3D application.

This chapter will demonstrate a number of these techniques, including;:

e Determining the current frame rate

e Setting the maximum frame rate

e Setting the stage quality

e Modifying the size and scaling of the viewport
e Triangle caching

e Level Of Detail (LOD) 3D objects

e The Away3D filter classes

¢ 3D model loading performance

Determining the current frame rate

When we talk about the performance of an Away3D application, almost always we
are referring to the number of frames per second (FPS) that are being rendered. This
is also referred to as the frame rate. Higher frame rates result in a more fluid and
visually-appealing experience for the end user. Although it is possible to visually
determine if an application has an acceptable frame rate, it can also be useful to get
a more objective measurement. Fortunately, Away3D has this functionality built in.

Performance Tips

By default, when it is constructed, the view3D class will create an instance of the
Stats class, which is in the away3d. core. stats package. This Stats object can be
accessed via the statsPanel property from the view3D class. You can display the
output of the Stats object on the screen using the Away3D project stats option in
the context (or right-click) menu of an Away3D application.

o To see the Away3D Project stats option in the context menu you
~ will need to click on a visible 3D object. If you click on the empty
Q space around the 3D objects in the scene, you will see the standard
Flash context menu.

BwaytD Project skats
Awaysh, cam w3,53.0

Shows Redraw Regions

Settings...
about Adobe Flash Player 10...

This will display a window similar to the following screenshot:

/\ AW AYID PROJECT I

This window provides a number of useful measurements:

e FPS, which measures the current frames per second

e AFPS, which measures the average number of frames per second

¢ Max, which measures the maximum peak value of the frames per second

e MS, which measures the time it took to render the last frame in milliseconds
¢ RAM, which measures how much memory the application is using

e MESHES, which measures the number of 3D objects in the scene

e SWF FR, which measures the maximum frame rate of the Flash application

e T ELEMENTS, which measures the total number of individual elements that
make up the 3D objects in the scene

e R ELEMENTS, which measures the number of individual elements that make
up the 3D objects that are being rendered to the screen

[336]

Chapter 13

These values come in very handy when trying to quantify the performance of an
Away3D application.

Setting the maximum frame rate

Recent versions of Flash default to a maximum frame rate of 24 frames per second.
This is usually fine for animations, but changing the maximum frame rate for a

game may allow you to achieve a more fluid end result. The easiest way to do

this is to use the SWF frameRate meta tag, which is a line of code added before the
Away3DTemplate class introduced in Chapter 1, Building Your First Away3D Application.

[SWF (frameRate=100)]
public class Away3DTemplate extends Sprite

{

// class definition goes here

}

a1

~ The SWF FR measurement displayed by the Away3D Stats object
reflects the maximum frame rate defined by the frameRate meta tag.

Note that setting the maximum frame rate using the frameRate meta tag does not
mean that your application will always run at a higher frame rate, just that it can run
at a higher frame rate. A slow PC will still run an Away3D application at a low frame
rate even if the maximum frame rate has been set to a high value.

You also need to be aware that any calculations performed in the onEnterFrame ()
function, such as transforming a 3D object, can be dependent on the frame rate of
the application. In the following code, we rotate a 3D object by 1 degree around the
X-axis every frame. This kind of transformation has been common throughout the
examples provided in this book.

override protected function onEnterFrame (event:Event) :void
super.onEnterFrame (event) ;
shipModel .rotationX += 1;

}

If the frame rate is 30 FPS, the 3D object will rotate around the X-axis by 30
degrees every second. If the frame rate is 90 FPS, the 3D object will rotate around
the X-axis by 90 degrees every second. If your application requires these kinds of
transformations to be performed consistently regardless of the frame rate, you can
use a tweening library like the one demonstrated in Chapter 3, Moving Objects.

[337]

Performance Tips

Setting Flash quality to low

You may have noticed that Flash offers a number of quality settings in its context
menu. This quality setting can be set to one of the four options, which are defined in
the stageQuality class from the flash.display package. As described by the Flash
API documentation, these settings are:

a1

StageQuality.LOW: Low rendering quality. Graphics are not anti-aliased,
and bitmaps are not smoothed, but runtime still use mip-mapping.

StageQuality.MEDIUM: Medium rendering quality. Graphics are anti-aliased
using a 2 x 2 pixel grid, bitmap smoothing is dependent on the Bitmap.
smoothing setting. Runtimes use mip-mapping. This setting is suitable for
movies that do not contain text.

StageQuality.HIGH: High rendering quality. Graphics are anti-aliased
using a 4 x 4 pixel grid, and bitmap smoothing is dependent on the Bitmap.
smoothing setting. Runtimes use mip-mapping. This is the default rendering
quality setting that Flash Player uses.

StageQuality.BEST: Very high rendering quality. Graphics are anti-aliased
using a 4 x 4 pixel grid. If Bitmap. smoothing is true the runtime uses a
high-quality downscale algorithm that produces fewer artifacts.

Mip-mapping refers to the use of mip-maps, which are precomputed
smaller versions of an original bitmap. They are used instead of the

Q original bitmap when the original is scaled down by more than 50 %. This

bitmap scaling may occur when a 3D object with a bitmap material is
itself scaled down, or off in the distance within the scene.

The quality setting is defined by assigning one of these values to the quality
property on the stage object:

stage.quality = StageQuality.LOW;

Al

~Q The Flex compiler does not support setting the stage quality in this way.

A number of demos that are supplied with Away3D set the stage quality
by using the SWF quality metatag, like so:

[SWF (quality="LOW")]

Although this code will not raise any errors during compilation, the stage
quality will remain at the default value of StageQuality.HIGH.

You can find more information on the metatags supported by the Flex
compiler at http://livedocs.adobe.com/flex/3/html/help.
html?content=metadata 3.html.

[338]

Chapter 13

Setting the stage quality to low will improve the performance of your Away3D
application. The increase is felt most in applications that display a large number of
3D objects, like DOFSpriteDemo application from Chapter 9, Special Effects with Sprites.

The downside to setting the stage quality to low is that it affects all the objects on
the stage, not just those drawn by Away3D. The low stage quality is particularly
noticeable when rendering text, so the visual quality of controls like textfields and
buttons can be significantly degraded.

a1

~ Using the medium-quality setting offers a good compromise
between speed and visual quality.

Reducing the size of the viewport

The fewer pixels that are drawn to the screen, the faster the rendering process
will be. The area that the view will draw into can be defined by assigning a
ClippingRectangle object to the clipping property on the view3D class.

To use the RectangleClipping class you first need to import it from the
away3d.core.clip package. You can then define the area that Away3D will draw
into by supplying the minx, maxX, min¥, and maxY init object parameters to the
RectangleClipping constructor like so:

view.clipping = new RectangleClipping(

{

minX: -100,

maxX: 100,
minY: -100,
maxY: 100

!
)i

The preceding code will limit the output of the view to an area 200 x 200 units in size.

[339]

Performance Tips

The viewportClippingDemo application, which can be found on the Packt website,
allows you to modify the size of the clipping rectangle at runtime using the arrow up
and arrow down keys. You can see the difference that the clipping rectangle makes
in the following image. On the left, the clipping rectangle is set to the full area of the
stage. On the right, the clipping rectangle has been reduced.

Scaling the viewport output

Another way to reduce the number of pixels rendered by Away3D is to assign a
BitmapSession object to the session property in the view3D class. The Number
passed to the BitmapSession constructor defines the internal scale of the bitmap that
the scene will be rendered into. The default scale is 2, which will create an internal
bitmap whose width and height are half that of the view. This means that the final
size of the internal bitmap is one quarter of the size of the view, and thus only a
quarter of the number of pixels need to be rendered.

To use the BitmapSession class, it first needs to be imported from the away3d. core.
session package. A new BitmapSession object can then be assigned to the session
property in the view3D class:

view.session = new BitmapSession(2) ;

[340]

Chapter 13

The internal bitmap is scaled up to fill the stage when it is drawn. So unlike clipping
the viewport, using the BitmapSession class allows your application to be displayed
using the entire area available to it. However, this does result in a pixilated look. You
can see this pixelation in the following images. The BitmapSession object used to
render the image on the left has a scaling of 1, while the BitmapSession object used
to render the image on the right has a scaling of 2.

Triangle caching

Away3D includes a feature called triangle caching, which is enabled by default.
Triangle caching removes the need for 3D objects to be re-rendered if the appearance
of the canvas they are rendered into has not been modified during the last frame.

By default, all 3D objects are rendered into one common canvas. In this scenario,
the triangle caching system will only provide some benefit if none of the 3D objects
in the scene are modified. While this results in a massive speed boost for static 3D
scenes, the ability to draw a static scene at a high frame rate is actually not all that
helpful —you could just as easily display a static image instead. Thankfully, triangle
caching can also be separately enabled for an individual 3D object by setting its
ownCanvas property to true, or enabled for a group of 3D objects by adding them
as children of an ObjectConatiner3D object that has its ownCanvas property set to
true. In this way, the 3D objects that are re-rendered each frame can be limited to
those individual 3D objects that are modified, or to the children of a container where
one of those children was modified. In all cases though, modifying the camera will
cause each 3D object to be re-rendered.

[341]

Performance Tips

Triangle caching is most useful when the camera is static and only a small number

of 3D objects need to be modified for a given frame. The TriangleCachingDemo
application demonstrates this by adding 75 complex 3D objects to a scene. Each of
these 3D objects has its ownCanvas property set to true, enabling the triangle caching
to be applied to each 3D object individually. Each 3D object also responds to the
MouseEvent3D.MOUSE_OVER and MouseEevent3D.MOUSE_OUT events to animate it
when it is under the mouse cursor. With a maximum of one 3D object being modified
at any one time, and therefore a maximum of one 3D object being re-rendered every
frame, triangle caching allows the application to run at a much higher frame rate
than would be possible if every 3D object was re-rendered for every frame.

package
{
import away3d.containers.ObjectContainer3D;
import away3d.core.base.Mesh;
import away3d.core.utils.Cast;
import away3d.events.MouseEvent3D;
import away3d.loaders.Max3DS;
import away3d.materials.BitmapMaterial;

import flash.events.Event;
import flash.filters.GlowFilter;
import flash.utils.getTimer;

public class TriangleCachingDemo extends Away3DTemplate
{
[Embed (source="ghip.3ds", mimeType="application/octet-stream")]
protected var ShipModel:Class;
[Embed (source="ship.jpg")]
protected var ShipTexture:Class;

protected static const MESH SCALE:Number = 0.02;
protected static const SCALE FACTOR:Number = Math.PI / 1000;
protected var selectedMesh:0bjectContainer3D;

public function TriangleCachingDemo ()

{

super () ;

protected override function initScene () :void

super.initScene () ;
this.camera.z = 0;

[342]

Chapter 13

The initial 3D model is loaded and textured from the embedded files. We will use
this as a template for all the 3D objects that will be added to the scene.

var shipMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (ShipTexture)) ;
var shipModel:ObjectContainer3D =
Max3DS.parse (Cast.bytearray (ShipModel) ,
{
autoLoadTextures: false,
scale: MESH SCALE,
rotationY: 180,

For the triangle caching system to work we need to set the ownCanvas property
to true.

ownCanvas: true

}
) ;
for each (var child:Mesh in shipModel.children)
child.material = shipMaterial;

Here we use three for loops, each used to calculate either the x, y, or z position of
the individual 3D objects that will be added to the scene.

var meshClone:0bjectContainer3D

for (var xPos:int = -40; xXPos <= 40; xPos += 20)
for (var yPos:int = -40; yPos <= 40 ; yPos += 20)
for (var zPos:int = 100; zPos <= 180 ; zPos += 40)

{

We then clone the template 3D object. This saves us the time it takes to parse the
3D model file (which, as we will see later on, can be quite significant). It also saves
some memory, as each of the cloned 3D objects references the geometry of the
template 3D object, instead of maintaining their own copy of that data.

meshClone = shipModel.clone() as ObjectContainer3D;

The cloned 3D object is then repositioned and added to the scene.

meshClone.x = xPos;
meshClone.y = yPos;
meshClone.z = zPos;
scene.addChild (meshClone) ;

[343]

Performance Tips

Each cloned 3D object is set to respond to the MouseEvent3D.MOUSE_OVER and
MouseEvent3D.MOUSE_OUT events.

meshClone.addEventListener (
MouseEvent3D.MOUSE OVER,
onMouseOver

) ;

meshClone.addEventListener (
MouseEvent3D.MOUSE OUT,
onMouseOut

protected function onMouseOver (event:MouseEvent3D) :void

{

We set the selectedMesh property to reflect the currently selected 3D object when
the mouse is over it.

selectedMesh = event.target as ObjectContainer3D;
The GlowFilter class is used to visually indicate which 3D object is selected.

selectedMesh.filters = [new GlowFilter()];

protected function onMouseOut (event:MouseEvent3D) :void

{

When the mouse has been moved off a 3D object, the selectedMesh property is set
to null to reflect the fact that no 3D object is currently selected.

selectedMesh = null;
var mesh:0bjectContainer3D =
event.target as ObjectContainer3D;

The filters property of the 3D object is set to an empty array, clearing the
GlowFilter object that was assigned to in the onMouseover () function.

mesh.filters = [];

[344]

Chapter 13

The scale of the 3D object is set back to its default.

mesh.scale (MESH SCALE) ;

}

protected override function onEnterFrame (event:Event) :void
super .onEnterFrame (event) ;
if (selectedMesh != null)

{

If there is a 3D object under the mouse pointer, we use some simple math to bounce
its scale between 1 and 2. This demonstrates how individual 3D objects can be
transformed or animated, while triangle caching is used on the remaining static

3D object to maintain a high frame rate.

var betweenNegOneAndOne:Number =
Math.sin(getTimer () * SCALE FACTOR) ;

var betweenZeroAndOne:Number =
(betweenNegOneAndOne + 1) / 2;

var betweenOneAndTwo:Number =
betweenZeroAndOne + 1;

selectedMesh.scale (betweenOneAndTwo * MESH_SCALE) ;

Level of detail models

Level of detail is a technique that is used to display simpler models with a lower
polygon count when they are off in the background, while displaying higher quality
models with larger polygon counts when they are closer to the camera. Sacrificing
the quality of those 3D objects in the background can produce a significant
performance boost, and because distant 3D objects are smaller when drawn

on the screen quite often there is no noticeable drop in visual quality.

The LoDObject class, from the away3d.containers package, is a container that will
display its child 3D objects only when they fall within a certain perspective value
range. This perspective value is calculated with the formula:

perspective value = camera zoom / (1 + distance from camera / camera
focus)

[345]

Performance Tips

A number of LoDObject objects can be used as a group to implement the level of
detail technique. As an example, let's take three sphere primitives, each constructed
with a different number of polygons:

var sphere0:Sphere = new Sphere(
{
radius:50,
segmentsW: 4,
segmentsH:3

)i

var spherel:Sphere = new Sphere(

radius:50,
segmentsW: 10,
segmentsH: 8

)i

var sphere2:Sphere = new Sphere(

radius:50,
segmentsW: 16,
segmentsH:12

!
)i

Each of these spheres is then added as a child of a new LoDObject object. The minp
init object parameter defines the minimum end of the perspective value range that
the children of the LoDObject object will be visible at. The maximum end of the
range is defined up to (but not including) the value supplied via the maxp parameter.

var lodObject0:LODObject = new LODObject (
{
minp:0,
maxp:0.25
'
sphere0
)i
var lodObjectl:LODObject = new LODObject (
{
minp:0.25,
maxp:0.5
'
spherel
)i

[346]

Chapter 13

var lodObject2:LODObject = new LODObject (
minp:0.5,
maxp:1l
sphere2
)

To use these three LODObject objects as a group, they can be added as children of
a standard objectContainer3D object:

var container:0ObjectContainer3D =
new ObjectContainer3D(lodObject0, lodObjectl, lodObject2) ;

When the container is added to the scene, one of these three spheres will then be
visible as the distance between the ObjectContainer3D object (and its children
LODObject objects) and the camera changes. To work out at what distance the
spheres are visible, the preceding formula can be rewritten as:

distance from camera = (1 / perspective value * camera zoom - 1) *
camera focus

Using the default values for the cameras zoom (10) and focus (100) properties, we
can work out that the sphereo 3D object will be visible when it is greater than 3,900
units from the camera. The sphere1 3D object will be visible when it is between 3,900
and 1,900 units from the camera. And the sphere2 3D object will be visible when it is
up to 1,900 units from the camera.

When the application is run, the following images will appear depending on the
distance from the camera to the container that holds the L.oDObject objects:

Distance: 1900 — 0 units

Distance: 3900 — 1900
Distance: greater than 3900

@ \

[347]

Performance Tips

Away3D filters

In Chapter 12, Filters and Postprocessing Effects, we saw how the FogFilter class could
be used to add a fog effect to the scene. It was also noted that those 3D objects that
were behind the last layer of fog were not rendered at all, providing an increase

in performance.

Two additional filters are also included in the away3d. core. filter package:
MaxPolyFilter and ZDepthFilter. Neither adds a visual effect to the scene, but they
can both be used to reduce the number of mesh elements that get drawn to the screen.

Both filters can be applied like the FogFilter class from Chapter 12, Filters and
Postprocessing Effects, by assigning them to the filters property available on both
the BasicRenderer and QuadrantRenderer classes. Or they can be passed into
either the BasicRenderer or QuadrantRenderer constructors, with the resulting
render class then assigned to the renderer property from the view3D class.

ZDepthFilter

The ZDepthFilter class defines a maximum z depth for mesh elements. Those that
lie beyond that maximum depth are not drawn to the screen. This provides the same
performance benefits as the FogFilter class, but without the fog effect.

The zDepthFilter constructor takes one parameter, maxz, which defines the
distance from the camera after which mesh elements are culled. In the following
example, a new instance of the zDepthFilter class has been created that will cull
all mesh elements that are more than 200 units away from the camera.

var zDepthFilter:ZDepthFilter = new ZDepthFilter (200) ;
view.renderer = new BasicRenderer (zDepthFilter) ;

In Away3D 3.6, there is a bug in the ZDepthFilter class that prevents it

M from working correctly. By using the FrustumClipping class, from the
away3d.core.clip package, you can achieve the same visual effect as
the ZDepthFilter class, but there is no performance benefit.

view.clipping = new FrustumClipping({maxZ:200});

MaxPolyFilter

The MaxPolyFilter filter will only allow a set number of mesh elements to be drawn
to the screen. It does this by retaining only the specified number of mesh elements
from the collection that would be drawn to the screen. Since this collection is sorted
by depth, this has the effect of discarding those mesh elements that represented the
furthest 3D objects in the scene.

[348]

Chapter 13

The zZDepthFilter constructor takes one parameter, maxp, which defines how many
mesh elements will be rendered. The following code creates a new instance of the
MaxPolyFilter class that will draw only the closest 500 mesh elements.

var maxPolyFilter:MaxPolyFilter = new MaxPolyFilter (500) ;

view.renderer = new BasicRenderer (maxPolyFilter) ;

a1

~ The value assigned to the maxP property relates directly to the
R ELEMENTS value displayed by the stats panel.

Offscreen rendering

There are many instances where a 3D application will display a great number of
similar 3D objects. A school of fish, a crowd of people or a city block could easily be
created by drawing a handful of individual 3D objects many times over.

Offscreen rendering can speed up these types of scenes considerably. Consider the
city scene in the following screenshot:

Adobe Flash Player 10 BEEE

File Miew Control Help
1 o X o L

[349]

Performance Tips

Even though the scene is made up of hundreds of buildings, each building is
displayed using one of five different models. Since each building is situated on a
single plane, meaning each is being viewed from roughly the same angle, offscreen
rendering can be employed in this situation to provide a performance boost.

The idea behind offscreen rendering is that a 3D object is rendered by a view that has
not been added to the stage, and is therefore not visible (or "offscreen"). The image

of the rendered 3D object is then displayed by a number of sprite3D objects within
the visible scene. Rendering a single 3D object and displaying the result on multiple
Sprite3D objects is much faster than rendering the original 3D object multiple times.

To demonstrate how offscreen rendering is implemented in Away3D, we will create
an application called 0ffscreenRenderingDemo.

package

{

import away3d.cameras.HoverCamera3D;
import away3d.containers.ObjectContainer3D;
import away3d.containers.View3D;

import away3d.core.base.Mesh;

import away3d.core.clip.RectangleClipping;
import away3d.core.session.BitmapSession;
import away3d.core.utils.Cast;

import away3d.loaders.Max3DS;

import away3d.materials.BitmapMaterial;
import away3d.primitives.Plane;

import away3d.sprites.Sprite3D;

import flash.display.BitmapData;
import flash.display.StageQuality;
import flash.events.Event;

import flash.events.MouseEvent;

[SWF (backgroundColor="#FFFFFF")]
public class OffscreenRenderingDemo extends Away3DTemplate

{

The textures that will be applied to the buildings and the ground plane
are embedded.

[Embed (source="building.jpg")]
protected var BildingTexture:Class;
[Embed (source="ground.jpg")]
protected var GroundTexture:Class;

[350]

Chapter 13

As are the 3Ds files that hold the models for our buildings.

[Embed (source="buildingl.3ds", mimeType="application/octet-
stream")]

protected var Buildingl:Class;

[Embed (source="building2.3ds", mimeType="application/octet-
stream")]

protected var Building2:Class;

[Embed (source="building3.3ds", mimeType="application/octet-
stream")]

protected var Building3:Class;

[Embed (source="building4.3ds", mimeType="application/octet-
stream")]

protected var Building4:Class;

[Embed (source="building5.3ds", mimeType="application/octet-
stream")]

protected var Building5:Class;

Each building will be added to its own view. The buildingViews collection will hold
references to these offscreen views.

protected var buildingViews:Vector.<View3D> =
new Vector.<View3D> () ;

Each of the five views will be used to create a BitmapMaterial object, which will
later be displayed on a Sprite3D object. The billboardMaterials collection will
hold references to these materials.

protected var billboardMaterials:Vector.<BitmapMaterials> =
new Vector.<BitmapMaterials>() ;

The mouseButtonDown, lastStageX, and lastStageY properties are used to rotate
the hover camera. Chapter 7, Cameras, covers the hover camera in more detail.

protected var mouseButtonDown:Boolean = false;
protected var lastStageX:Number = 0;
protected var lastStageY:Number = 0;

public function OffscreenRenderingDemo ()

{

super () ;

[351]

Performance Tips

The initEngine () function is used to set the stage quality to low, create
a hover camera, and to create a number of offscreen views by calling the
buildOffscreenview () function.

protected override function initEngine() :void
{
super.initEngine () ;
stage.quality = StageQuality.LOW;
view.camera = new HoverCamera3D (
{
distance: 1500,
yfactor:1,
tiltAngle: 15
}
)i

for (var i:int = 0; 1 < 5; ++1)
buildingViews.push (buildOffscreenvView()) ;

}
The buildoffscreenvView () function is where the offscreen views are created.

protected function buildOffscreenView () :View3D

{

Creating an offscreen view is no different to a regular view. Both are represented by
the view3D class.

var buildingView:View3D = new View3D() ;

Even though we don't actually add the offscreen view to the stage, we still need to
position it as if it were a visible view.

buildingView.x = stage.stageWidth / 2;
buildingView.y = stage.stageHeight / 2;

In order to take the output of the view and display it as a material, we need to use
the BitmapSession class. Using the bitmap data that the BitmapSession renders

to as the source bitmap data for a BitmapMaterial class, we can take the offscreen
rendering of a 3D object and display it on a Sprite3D object within the visible scene.

buildingView.session = new BitmapSession(1l) ;

[352]

Chapter 13

Using the RectangleClipping class is very important, as it reduces the number of
pixels that have to be drawn by the sprite3D objects. The demo would work, for the
most part, if there was no clipping done for the offscreen views, because the space
around the 3D objects they render would be transparent. However, drawing even
completely transparent pixels back in the onscreen view has a performance cost, so it
is better to limit the number of pixels that the offscreen views render.

buildingView.clipping =
new RectangleClipping(

{

minX:-35,
maxX:35,
minY: -175,
max¥Y: 175

}
) ;

The offscreen view also gets a hover camera. As the hover camera rotates around in
the onscreen view, it will also rotate around in the offscreen views. This matches the
angles of both cameras, so the offscreen view of the 3D objects approximates how
they would be seen if they had been added directly to the onscreen view.

buildingView.camera =
new HoverCamera3D (
distance:1500,
yfactor:1,
tiltAngle: 15
) ;

We return the new view, so it can be added to the buildingViews collection by the
initObject () function.

Importantly, we have not added these offscreen views to the display list. This means
that they will not be visible.

return buildingView;

}

[353]

Performance Tips

In order to move the hover camera around, we need to listen to a number of mouse
events. Again all of this code is explained in Chapter 7, Cameras.

protected override function initListeners() :void

{

super.initListeners() ;

stage.addEventListener (
MouseEvent .MOUSE DOWN,
mouseDown
) ;

stage.addEventListener (
MouseEvent .MOUSE UP,
mouseUp

) ;

stage.addEventListener (
MouseEvent .MOUSE MOVE,
mouseMove

) ;

protected override function onEnterFrame (event:Event) :void

{

super.onEnterFrame (event) ;

The position of the hover camera from the on screen view is updated.

(view.camera as HoverCamera3D) .hover() ;

for each (var offscreenView:View3D in buildingViews)

{

The position of the hover cameras from each of the offscreen views are also updated
to match the orientation of the hover camera in the onscreen view.

(offscreenView.camera as HoverCamera3D) .hover() ;
We also need to render each of the offscreen views.

offscreenView.render () ;

protected override function initScene () :void

{

super.initScene () ;

[354]

Chapter 13

Each of the building 3D objects will share the same material, which we create here
from the embedded texture.

var buildingMaterial:BitmapMaterial =
new BitmapMaterial (Cast.bitmap (BildingTexture)) ;

Each of the building 3D models is then loaded. Loading models from a model file is
covered in more detail in Chapter 6, Models and Animations.

var buildingl:ObjectContainer3D =
Max3DS.parse (
Buildingl,
{
autoLoadTextures: false,
y: -200
}
) ;
var building2:0bjectContainer3D =
Max3DS.parse (
Building2,
{
autoLoadTextures: false,
y: -200
}
) ;
var building3:0bjectContainer3D =
Max3DS.parse (
Building3,
{
autoLoadTextures: false,
y: -200
}
) ;
var building4:0bjectContainer3D =
Max3DS.parse (
Building4,
{
autoLoadTextures: false,
y: -200
}
) ;
var building5:0bjectContainer3D =
Max3DS.parse (
Building5,

[355]

Performance Tips

autoLoadTextures: false,
y: -200
)i

for each (var container:0ObjectContainer3D in [buildingl,
building2, building3, building4, building5])
for each (var child:Mesh in container.children)
child.material = buildingMaterial;

These building 3D objects are then added to one of the offscreen scenes.

buildingViews [0] . scene.addChild (buildingl)

buildingViews [1] . scene.addChild (building?2) ;

buildingViews [2] .scene.addChild (building3) ;
()
()

1

1

buildingViews [3] .scene.addChild (building4
buildingViews [4] .scene.addChild (building5

1

This application will display each of the buildings in the scene as a Sprite3D
object added to a Mesh object. Here we create a new Mesh object and add it to the
onscreen scene.

var sceneMesh:Mesh = new Mesh() ;
scene.addChild (sceneMesh) ;

We loop over each of the five offscreen views.

var view:View3D;
var bitmap:BitmapData;
for (var i:int = 0; 1 < 5; ++1)

{
We get a reference to the offscreen view from the buildingviews collection.
view = buildingViews[i] ;

We then get a reference to the BitmapData object that the views BitmapSession
draws in to.

bitmap = (view.session as BitmapSession) .getBitmapData (view) ;

Finally, we create a new BitmapMaterial object, supplying the BitmapData
reference we obtained above. This new BitmapMaterial object is then stored
in the billboardMaterials collection.

[356]

Chapter 13

Now, because the view and the BitmapMaterial objects both reference the same
BitmapData object, when the offscreen views render a frame it is automatically
reflected in the corresponding BitmapMaterial object, and thus also shown by
any Sprite3D object displaying the BitmapMaterial object as a material.

billboardMaterials.push (
new BitmapMaterial (bitmap)
) ;
}

We add a plane primitive to the scene, which will represent the ground. Notice that
we have used the screenzof fset init object parameter to ensure that the ground

is always drawn beneath the Mesh that contains the building Sprite3D objects. The
screenzoOf fset init object parameter is covered in Chapter 4, Z-Sorting.

scene.addChild (
new Plane (
{
material: new BitmapMaterial (Cast.bitmap (GroundTexture)),
width: 8000,
height: 8000,

X: -66,
Z: 66,
y: -130,

segments: 20,
screenzOffset: 1000

)
) ;

This is what everything has been working up to: creating the Sprite3D objects that
will display the output of the offscreen views. We use a nested for loop to create
1,600 billboards in a grid on the X/Z plane.

var randomMaterial:BitmapMaterial;
var sprite:Sprite3D;
for (var xPos:int = -4000; xPos < 4000; xPos += 200)

for (var zPos:int = -4000; zPos < 4000; zPos += 200)

{

[357]

Performance Tips

Each billboard will display a random BitmapMaterial object from the
billboardMaterials collection.

randomMaterial =
billboardMaterials |
Math.round (Math.random() * 4)
1;

We then create a new sprite3D object, supplying the randomly selected material,
and then positioning it within the grid.

sprite = new Sprite3D(randomMaterial) ;

sprite.x = xPos;
sprite.y = 0;
sprite.z = zPos;

The sprite3D object is then added to the Mesh object, which will make it visible
within the scene.

sceneMesh.addSprite (sprite) ;

}

The mouseDown () and mouseUp () functions are used to set the properties that control
how the hover cameras are moved.

protected function mouseDown (event :MouseEvent) :void

{

this.mouseButtonDown = true;
this.lastStageX = event.stageX;
this.lastStageY = event.stage¥;

protected function mouseUp (event:MouseEvent) :void

{

this.mouseButtonDown = false;

}

The tilt and pan angles of the offscreen and onscreen hover cameras are all updated
to reflect any mouse movement over the last frame.

protected function mouseMove (event :MouseEvent) :void

{

if (this.mouseButtonDown)

{

[358]

Chapter 13

var pan:int = (event.stageX - lastStageX);
var tilt:int = (event.stageY - lastStagey);

(view.camera as HoverCamera3D) .panAngle += pan;
(view.camera as HoverCamera3D) .tiltAngle += tilt;

for each (var offscreenView:View3D in buildingViews)

{

(offscreenvView.camera as HoverCamera3D) .panAngle += pan;
(offscreenView.camera as HoverCamera3D) .tiltAngle += tilt;

this.lastStageX event .stageX;

this.lastStageY = event.stageY;

}
}

The end result is a mesh with 1,600 Sprite3D elements. Each sprite3D displays
the output of one of five offscreen views, while each offscreen view is rendering a
single building 3D object. This creates a scene that would be impossible to render
at a reasonable frame rate if each building 3D object has been added to the

scene individually.

Offscreen rendering actually achieves a similar result to the DirectionalSprite
class, which you can read about in Chapter 9, Special Effects with Sprites. There are
three main benefits to using offscreen rendering;:

1. Each model rendered offscreen can be viewed from any angle, not just the
discreet angles defined by a DirectionalSprite object.

2. The collective size of the hundreds of images it takes to render a
DirectionalSprite object from all angles can often far outweigh the size of
a single off screen 3D model and its textures.

3. Itis often easier to work with a single 3D object than to pre-render all the
images required by a DirectionalSprite object.

[359]

Performance Tips

Model formats

Away3D can load 3D models from a variety of formats. The decision on which
format to use in your published application is sometimes determined by the features
that each format provides. If you require bones animation, you may choose to use the
Collada format, while the Quake2 MD2 format supports vertex animation. However,
for static models any of the formats can be used.

Differences in these formats can lead to significant differences in the time it

takes them to be loaded and parsed, as well as factors such as model complexity,
animation, UV data, and external materials. When your choice of model format is
not dictated by their functionality, these differences can have a significant impact
on your applications' loading times. Under certain circumstances, one model
format may load as much as ten times faster than another.

Take a look at the following graph. The values represent the average time it took to
load a common sphere from seven different model formats supported by Away3D,
using the 3DS format as a baseline. The sphere was made up of 3,970 triangles, did
not include any animation or bones, was not textured, and contained no UV data.
The models were embedded into the SWF, removing any variation that may have
arisen from loading the files externally across the network.

Average Model Loading Times
10

ibs ASE DAE oBJ AWD AS MD2

3D Model Formats

L L+2] [=1]

&

Loading time - Relative to 3DS

As you can see, the time it took to load this sample 3D model varies quite
significantly. The MD2, 3DS, and OB]J formats all load relatively quickly, while the
ASE, DAE, AWD, and AS formats take significantly more time.

[360]

Chapter 13

Now, take a look at the graph for loading times for a more complex sphere that is
made up of 7,922 triangles (again without any textures, bones, animations, or UV
data). Again, the values are relative to the time it takes to load the 3DS model. The
MD2 format was not included because it is limited to 4,092 triangles.

Average Model Loading Times

DAE OBJ AWD AS

30 Model Formats

10

=

(]

Loading Time - Relative to 303

.
3DSs ASE

The situation here is different, with 3DS clearly being the fastest format to load.

What is important to take from these graphs are not the specific numbers themselves,
but the fact that under different circumstances some model formats can load
significantly faster than the others. Finding the best model format does have to be
done on a case by case basis, but it is worth doing as there is a huge potential to
reduce the time it takes to load 3D model files.

The following ModelLoadingSpeedTest application is an example of how the
loading times of different formats can be measured. It loads a number of 3D models
in different formats five times each in random order, and displays the averaged
loading times on the screen. It is a quick way to judge which formats will perform
the best.

package
{
import away3d.loaders.AWData;
import away3d.loaders.Ase;
import away3d.loaders.Collada;
import away3d.loaders.Max3DS;
import away3d.loaders.Md2;
import away3d.loaders.Obj;
import away3d.materials.WireColorMaterial;

[361]

Performance Tips

import flash.events.Event;
import flash.text.TextField;
import flash.utils.getTimer;

public class ModellLoadingSpeedTest extends Away3DTemplate

{

Sample models saved in the various formats are embedded. When using this class
to test your own 3D models, you will have to update the src parameter to reflect
the names of your 3D model files.

[Embed (source="TestSphere.3ds", mimeType="application/octet-
stream")]

protected var TestModel3DS:Class;

[Embed (source="TestSphere.ase", mimeType="application/octet-
stream")]

protected var TestModelASE:Class;

[Embed (source="TestSphere.dae", mimeType="application/octet-
stream")]

protected var TestModelDAE:Class;

[Embed (source="TestSphere.obj", mimeType="application/octet-
stream")]

protected var TestModelOBJ:Class;

[Embed (source="TestSphere.awd", mimeType="application/octet-
stream")]

protected var TestModelAWD:Class;

[Embed (source="TestSphere.md2", mimeType="application/octet-
stream")]

protected var TestModelMD2:Class;

The following six Array objects are used to hold the loading times for the various
3D model formats we are testing.

protected var ThreeD3LoadTimes:Array = new Array () ;
protected var MD2LoadTimes:Array = new Array () ;

1

protected var ASELoadTimes:Array = new Array

1

protected var DAELoadTimes:Array = new Array

1

protected var OBJLoadTimes:Array = new Array

1

()
()
()
protected var AWDLoadTimes:Array = new Array ()
protected var ASLoadTimes:Array = new Array();

Each embedded 3D model will be loaded, and the loading process timed, by a
separate function. These functions will be added to the functionCalls collection,
which we will then use to randomly select the next model loading operation.

protected var functionCalls:Array = new Array();

[362]

Chapter 13

The TextField object referenced by the results property will be used to display the
status of the application, and the results when the test is completed.

protected var results:TextField;

public function ModellLoadingSpeedTest ()

{

super () ;

Each of the six functions used to load a 3D model is added to the functioncalls
collection five times. This means that each of these functions will be called five times
each, allowing us to get an average loading time for each of the 3D model formats.

for (var i:int = 0; 1 < 5; ++1)

{
functionCalls.push(load3DS) ;
functionCalls.push (loadASE) ;
functionCalls.push (loadOBJ) ;
functionCalls.push (loadDAE) ;
functionCalls.push (loadAWD) ;
functionCalls.push (loadAs) ;
functionCalls.push(loadMD2) ;

protected override function initUI () :void
{

super.initUI() ;

results = new TextField() ;

results.x = 10;

results.y = 10;

results.width = 300;

addChild (results) ;

protected override function onEnterFrame (event:Event) :void

{

super .onEnterFrame (event) ;

As we call each of the functions, they are removed from the functioncalls
collection. If the functioncCalls collection has no more elements, we don't need
to do any more processing.

if (functionCalls.length != 0)

{

[363]

Performance Tips

The status text on the screen is updated to show how many function calls remain.

results.text =
functionCalls.length +

" model loading operations remaining";

Here we get a reference to and remove a random function from the functioncalls
collection.

var randomPos:int =
Math.round (
Math.random() * (functionCalls.length - 1)
)i
var func:Function = functionCalls [randomPos] ;

functionCalls.splice (randomPos, 1) ;

The function is then called, which will record the time it takes to load a 3D model.

func () ;

If there are no more functions left in the functioncalls collection we have run
through all the tests, we can now display the results.

if (functionCalls.length == 0)

{
The average loading time is calculated for each of the different 3D model formats.

var avg3DS:Number =
getAverage (ThreeD3LoadTimes)
var avgASE:Number = getAverage (ASELoadTimes

7
7

()
var avgDAE:Number = getAverage (DAELoadTimes)
var avgOBJ:Number = getAverage (OBJLoadTimes) ;

)

7

var avgAWD:Number = getAverage (AWDLoadTimes
var avgAS:Number = getAverage (ASLoadTimes) ;
var avgMD2:Number = getAverage (MD2LoadTimes) ;

The results are then displayed on the screen.

results.text =

"MD2: " +

avgMD2 .toPrecision (4) +
" seconds\n" +

"3DS: " +
avg3DS.toPrecision (4) +
" seconds\n" +

"ASE: " +

[364]

Chapter 13

avgASE.toPrecision (4) + "
seconds\n" +

"DAE: " +
avgDAE.toPrecision (4) +
" geconds\n" +

"OBJ: " +
avgOBJ.toPrecision (4) +
" geconds\n" +

"AWD: " +
avgAWD.toPrecision (4) +
" geconds\n" +

llAS: n +
avgAS.toPrecision (4) +
" seconds";

}

The getAverage () function simply returns the average value of an Array containing
a collection of Number.

protected function getAverage (array:Array) :Number

{

var average:Number = 0;
for each (var time:Number in array)
average += time;

return average / array.length;

}

Each of the six functions below are used to load a 3D model of a particular
format. You can get more information on loading 3D models in Chapter 6,
Models and Animations.

protected function loadMD2 () :void

{

We make a note of the current time before the 3D model is loaded. The value
returned by the getTimer () function is in milliseconds.

var start:int = getTimer () ;
The 3D model is loaded.

Md2 .parse (TestModelMD2) ;

[365]

Performance Tips

We make a note of the current time after the 3D model is loaded.
var stop:int = getTimer();
The time it took to load the 3D model is calculated in seconds.

var time:Number = (stop - start) / 1000;

This loading time is then stored in the appropriate Array object.

MD2LoadTimes.push (time) ;

}

All the following functions use the same logic as the 1oadMp2 () function described
above to store the time it takes to load a 3D object from a given model format.

protected function load3DS() :void
{
var start:int = getTimer () ;
Max3DS.parse (
TestModel3DS,

{

autoLoadTextures: false
}
)i
var stop:int = getTimer();
var time:Number = (stop - start) / 1000;
ThreeD3LoadTimes.push (time) ;

protected function loadASE() :void

{
var start:int = getTimer () ;
Ase.parse (TestModelASE, {scaling: 1});
var stop:int = getTimer () ;
var time:Number = (stop - start) / 1000;
ASELoadTimes.push(time) ;

protected function loadDAE () :void
{
var start:int = getTimer () ;
Collada.parse (TestModelDAE) ;
var stop:int = getTimer();
var time:Number = (stop - start) / 1000;

[366]

Chapter 13

}

DAELoadTimes.push (time) ;

protected function loadOBJ () :void

{

var start:int = getTimer();
Obj .parse (
TestModelOBJ,
useMtl:false,
material: new WireColorMaterial ()
)i
var stop:int = getTimer () ;
var time:Number = (stop - start) / 1000;
OBJLoadTimes.push (time) ;

protected function loadAWD () :void

{

var start:int = getTimer();

AWData.parse (TestModelAWD, {});

var stop:int = getTimer () ;

var time:Number = (stop - start) / 1000;
AWDLoadTimes.push (time) ;

protected function loadAS() :void

{

var start:int = getTimer();

new TestSphere () ;

var stop:int = getTimer () ;

var time:Number = (stop - start) / 1000;
ASLoadTimes.push (time) ;

Another issue to consider is the size of the 3D model files. The test sphere model
used in the first loading test ranged in size from 55 KB for the MD2 file all the way
up to 1.47 MB for the ASE file. That means the ASE file would take over 20 times as
long to download once the application was launched if it were not embedded in the
SWE file.

[367]

Performance Tips

Summary

Optimizing your Away3D application can be the difference between a slow and
frustrating or rewarding experience for the end user. In this chapter, we looked

at how the performance of an Away3D application can be easily monitored using
the included stats class. A number of techniques were then presented that can

be employed to trade off visual accuracy with performance, such as reducing the
stage quality, using filters to reduce the number of elements that are rendered to the
screen, reducing the resolution of the rendered output, and reducing the screen area
that is drawn to.

A sample application was presented that demonstrated how offscreen rendering can
be used to create detailed scenes that would not be possible to create with standard
3D objects alone.

The LoDObject class was covered, which can be used to increase performance by
rendering lower detail 3D models when further back in the scene.

Finally, we saw how the various 3D model formats supported by Away3D can affect
an application's loading performance.

[368]

Symbols

_constructorParams collection 257
_constructorParams property 257
_index init object parameter, AnimatedBit-
mapMaterial class 147
3D formats, Away3D
3DS Max 174
3DS MAX Ascii 174
ActionScript 174
Away3D 174
Collada 174
Google Earth 174
Quake II 174
Wavefront 174
3D modeling applications
3ds Max 173
about 173
Blender 173
Milkshape 173
Sketch-Up 173
3D models
animated models 180
exporting 174
exporting, from 3ds Max 175
exporting, from MilkShape 176
exporting, from Sketch-Up 176, 177
loading 179
MD2 180
static models 190
3D object
scaling 88
transforming 71
3D object, scaling
scale() function 88
scale init object parameter 88
scaleX property 88

Index

scaleY property 88
scaleZ property 88
3D object rotation
movePivot() function 86
pitch() function 87
roll() function 87
scenePivotPoint property 87
yaw() function 87
3ds Max
3D models, exporting from 175
3DS model format
about 190
embedded file, loading 190-192
external file, loading 192, 193
3D text
creating 269
extruding 274
warping 277-284
3D text, creating
3D text, extruding 274-276
3D text, warping 277-284
3D text materials 273
fonts, embedding 270
text, displaying in scene 271-273
3D text materials 273

A

AbstractParser constructor 204
AbstractPrimitive class 45

ActionScript Virtual Machine 2 (AVM?2) 335
addAction() function 264

addChild() function 44, 73
addDirectionalMaterial() function 248
addEventHandler() function 226
addEventListener() function 231
addHoverCamera() function 215, 218

addInitializer() function 262
additional renderers, Away3D
about 108
CORRECT_Z_ORDER renderer 108
INTERSECTING_OBJECTS renderer 112
addOnMouseDown() function 237
addOnMouseMove() function 237
addOnMouseOut() function 237
addOnMouseOver() function 237
addOnMouseUp() function 237
addOnRollOut() function 237
addOnRollOver() function 237
addOnSuccess() function 188
addSpringCamera() function 218
addTargetCamera() function 218, 219
Adobe Flash Builder
Away3DTemplate, adding 21, 22
empty project, creating 10
Flex SDK, using 13-15
SphereDemo, running 28
Adobe Flash CS4
about 11,12
Away3DTemplate, adding 23, 24
empty project, creating 11, 12
Flex SDK, using 17
SphereDemo, running 28
Adobe Flex Builder
about 10
Away3DTemplate, adding 21, 22
empty project, creating 10
Flex SDK, using 13-15
SphereDemo, running 28
Adobe Pixel Bender Exchange 313
AFPS 336
alpha init object parameter, ShadingColor-
Material class 157
alpha init object parameter, WireColorMate-
rial class 139
ambient init object parameter, Shading-
ColorMaterial class 156
AmbientLight3D class 122
AnimatedBitmapMaterial material
about 146, 147
init object parameters 147
animated materials
about 145
AnimatedBitmapMaterial 146

Interactive MovieMaterial 148

MovieMaterial material 145
AnimationData class 180
AnimationData object 187
animationData variable 182
aperture property 252
applyBlurFilter() function 317
applyDisplacementMapFilter() function 318
applyGlowFilter() function 319
applyShaderFilter() function 320
applyWireColorMaterial() function 133, 139
applyWireframeMaterial() function 120
AS

converted model, loading 189
asAS3Class() function 204
Ase class 199
ASE file format

about 197

embedded file, loading 197

external file, loading 198, 200
Ase load() function 198
autoLoadTextures parameter 192
autoplay init object parameter, Animated-

BitmapMaterial class 147

autosave attribute

camera lenses 209
autoUpdate init object parameter, Movie-

Material class 146

Away3D

3D formats 174

3D text, creating 269

additional renderers 108

colors 119

downloading 8

empty project, creating 10

Flash quality, setting to low 338

frame rate, determining 335-337

global coordinate system 71

level of detail models 345, 347

lights 122

local coordinate system 71

materials 117,122

maximum frame rate, setting 337

model formats 360

mouse events 225

objects, positioning in 3D scene 25

offscreen rendering 349, 350

[370]

)painter's algorithm 100
parent coordinate system 71-74
scene, sorting 100-103
sorting order, adjusting 103
source, downloading using SVN 9
source ZIP file, downloading 8, 9
sprite classes 241
textures, loading from external resources
168
triangle caching 341-345
viewport output, scaling 340, 341
viewport size, reducing 339, 340
z-sorting 107
Away3D. Hlint
about 256
URL 256
away3d.lights package 122
Away3DFilterDemo class 323
Away3D Filters 322-326
Away3D filters
about 348
MaxPolyFilter 348
ZDepthFilter 348
Away3DParticle initialize() function 259,
262
Away3DParticleRenderer class 258
Away3DParticleRenderer render() function
264
Away3D Stardust initializer
creating 256, 257
Away3D Stardust particle renderer
creating 258-260
Away3DTemplate
adding, to Adobe Flash Builder 21, 22
adding, to Adobe Flash C54 23, 24
adding, to Adobe Flex Builder 21, 22
adding, to FlashDevelop 22, 23
extending 26, 27
running 21

Away3DTemplate class 18, 128, 179, 265, 337

Away3DTemplate constructor 26,179
AWData class 194
AWD format
about 193
embedded file, loading 193-196
external file, loading 196, 197

axial symmetry 294
axTiltAngle parameter, HoverCamera3D
class 222

B

base elements, 3D object
segments 38
Sprite3D 35-37
basic materials
about 137
ColorMaterial 140
WireColorMaterial 137, 138
WireframeMaterial 139
BASIC property 108
BasicRenderer 325
BitmapData applyFilter() function 331
BitmapData draw() function 330
BitmapData object 141 299
BitmapFileMaterial class 41,183
BitmapFileMaterial material
about 169
init object parameters 169
BitmapMaterial class 94, 180
BitmapMaterial material
about 141
init object parameters 142
BitmapMaterial object 181
bitmap materials
about 141
BitmapMaterial material 141
TransformBitmapMaterial material 143
BitmapRenderSession
postprocessing, with 327-332
BitmapSession.getBitmapData() function
330
BitmapSession class 326
BitmapSession constructor 340
bitmapSessionData variable 331
BitmapSession object 340
Blender
3D models, exporting from 177
blendMode init object parameter, Bitmap-
Material class 142
blendMode init object parameter, Enviro-
ColorMaterial class 154

[371]

BlurFilter

applying 317
BlurFilter class 317
bounce property 130
buffer variable 328
buildOffscreenView() function 352
bytearray() function 181

C

cache init object parameter, ShadingColor-
Material class 157
camera
properties 208
Camera3D class
focus property 208
fov property 209
zoom property 209
Camera3D unproject() function 238
camera classes
about 212-214
hover camera 220
spring camera 223
target camera 219
CameraDemo 213
camera lenses
about 209
OrthogonalLens 212
PerspectiveLens 210
SphericalLens 210
ZoomFocusLens 210
Cast class 94, 142
centerMesh init object parameter 295
checkPolicyFile init object parameter, Bit-
mapFileMaterial 169
CJsignals library
downloading 256
clearFilters() function 315, 316
clipping property 339
ClippingRectangle object 339
Collada
about 174
embedded file, loading 185, 186
external file, loading 187, 188
Collada class 185
Collada exporters 178,179
ColladaMax plugin

about 175

downloading 175

installing 175
ColorMaterial material

about 140, 141

init object parameters 141
colors

about 119

defining 119

defining, by integer 119

defining, by string 120
ColorTransform class 328
colorTransform init object parameter, Bit-

mapMaterial class 143

composite materials

about 149

DepthBitmapMaterial 149, 151

EnviroBitmapMaterial 151, 152

EnviroColorMaterial 153
cone class

about 46

init object parameters 47
construct() function 257
Container3D object 323
continousCurve() function 279
CORRECT_Z_ORDER renderer 108
Cube class

about 47

init object parameters 48
CubeMaterialsData constructor 49
CubFaces class 128
CubicEnvMapPBMaterial material

about 167,168

init object parameters 168
currentPrimitive property 41, 130
Cylinder class

about 51

init object parameters 51

D

Damping3D action 265

DeathLife action 264

debug init object parameter, BitmapMate-
rial class 142

debug init object parameter, ColorMaterial
class 141

[372]

debugPath() function 281
DepthBitmapMaterial material

about 149, 151

init object parameters 151
DepthOfFieldSprite class

about 251

aperture property 252

doflevels property 252

focus property 252

implementing 251-255

maxblur property 252
DepthOfFieldSpriteDemo demo 255
depth sorting 100
destPoint parameter 331
diffuse init object parameter, ShadingColor-

Material class 156

DirectionalLight3D class 122
directionalLight property 130
DirectionalSprite class

about 245

implementing 245-250
DirectionalSprite object 248, 249
displacement map 318
DisplacementMapFilter

applying 318
DisplacementMapFilter constructor 318
DisplacementMapFilter object 318
DisplayObiject class 312
DisplayObject object 312
distance parameter, HoverCamera3D class

222

doflevels property 252
Dot3BitmapMaterialF10 material

about 122,161, 162

init object parameters 162
Dot3BitmapMaterial material

about 122,160

init object parameters 161

E

EarthDiffuse class 128, 141
Elevation class 297

Elevation generate() function 302
ElevationReader class 302
emitter property 266

empty project
creating 10

creating, in Adobe Flash C54 11, 12
creating, in Adobe Flex Builder 10
creating, in FlashDevelop 10, 11
EnviroBitmapMaterial material
about 151, 152
init object parameters 152
EnviroColorMaterial material
about 153
init object parameters 153
enviroMap init object parameter, EnviroBit-
mapMaterial class 152
enviroMap init object parameter, Enviro-
ColorMaterial class 154
environment mapping, shading techniques
125
envMapAlpha init object parameter, Cubi-
cEnvMapPBMaterial 168
envMapAlpha init object parameter, Fres-
nelPBMaterial 166
execute() function 281-284, 308
extractFonts() function 272

F

faces init object parameter, CubicEnv-
MapPBMaterial 168
faces init object parameter, FresnelPBMate-
rial 166
FFmpeg
about 147
downloading 147
Fighter class 95
filters property 312, 344
filterText property 313
fish-eye lens 211
flag
creating, PathExtrusion class used 288-290
Flash API documentation, settings
Bitmap.smoothing setting 338
StageQuality. BEST 338
StageQuality. HIGH 338
StageQuality. LOW 338
StageQuality. MEDIUM 338
FlashDevelop
about 10, 11
Away3DTemplate, adding 22, 23
empty project, creating 10, 11

[373]

Flex SDK, using 15, 16
SphereDemo, running 28
Flash filters
about 312
applying 312-316
applying, to the view 321
BlurFilter, applying 317
DisplacementMapbFilter, applying 318, 319
GlowFilter, applying 319, 320
Pixel Bender Shaders, applying 320, 321
Flash platform 335
Flash Player 10
about 7
downloading 8
overview 7
Flash quality
setting, to low 338
Flash Sprite class 18
flat shading, shading techniques 126
Flex SDK
about 13
downloading 13
using, in Adobe Flash Builder 13, 14
using, in Adobe Flash CS4 17
using, in Adobe Flex Builder 13, 14
using, in FlashDevelop 15, 16
flip parameter 295
focus property 252
FogFilter class 322
followContinuousCurve() function 278, 279
followCurve() function 278, 283
followLine() function 278-281
FontDemo application
creating 271
Fonts.SWF file 271
Fonts class 271
FPS 336
frameCount property 130
frame rate
determining 335, 336
frameRate meta tag 337
frames per second (FPS) 335
FresnelPBMaterial material
about 165, 166
init object parameters 166
FrustumClipping object 214

G

generate() function 299
geodesic sphere
about 52
comparing, with regular sphere primitive
53
GeodesicSphere class
about 52
init object parameters 54
get() function 257
getAverage() function 365
getLevel() function 302
getMaterial() function 203
getXMLTagName() function 261
global coordinate system. See also world
space 72
globalProjection init object parameter,
TransformBitmapMaterial class 144
gloss init object parameter, PhongMulti-
PassMaterial 165
gloss init object parameter, PhongPBMate-
rial 164
GlowFilter
applying 319
GlowgFilter class 237, 319, 344
GlowFilter constructor 319
grid plane 54
GridPlane class
about 55
the init object parameters 55
groundPlane property 233
groundPosition property 233

H

height map 297
HeightMapModifier class 306
HeightMapModifierDemo application

about 307

applying 307-310
hover() function 216, 221
hover camera 220
HoverCamera3D class

about 220

init object parameters 222
hoverCamera property 221

[374]

initCone() function 47
initCube() function 48,131
initCylinder() function 51
initDirectionalLight() function 132
initEngine() function 19, 41, 108, 352
initGeodesicSphere() function 53
initGridPlane() function 55
initial application

creating 18-20
initialize() function 257
initLineSegment() function 56
initListeners() function 19,134, 215
initObject() function 353
init object parameters

align 273

back 46

bothsides 46

leading 272

letterSpacing 272

material 46

outline 46

size 272

text 272

width 273
init object parameters, AnimatedBitmapMa-

terial class

_index 147

autoplay 147

loop 147

movie 147
init object parameters, BitmapFileMaterial

checkPolicyFile 169

url 169
init object parameters, BitmapMaterial

material

bitmap 142

blendMode 142

color 143

colorTransform 143

debug 142

repeat 142

showNormals 143

smooth 142

wireColor 142

init object parameters, ColorMaterial mate-
rial
color 141
debug 141
init object parameters, cone class
height 47
openEnded 47
radius 47
segmentsH 47
segmentsW 47
yUp 47
init object parameters, Cube class
cubeMaterials 49
depth 48
faces 49
flip 48
height 48
mappingType 48
segmentsD 48
segmentsH 48
segmentsW 48
width 48
init object parameters, CubicEnvMapPBMa-
terial
bitmap 168
envMapAlpha 168
faces 168
normalMap 168
targetModel 168
init object parameters, Cylinder class
height 51
openEnded 52
radius 51
segmentsH 52
segmentsW 51
yUp 52
init object parameters, DepthBitmapMate-
rial class
bitmap 151
maxColor 151
maxZ 151
minColor 151
minZ 151
init object parameters, Dot3BitmapMaterial
class
bitmap 161
normalMap 161

[375]

shininess 161
specular 161
init object parameters, Dot3BitmapMate-
rialF10
bitmap 162
normalMap 162
shininess 162
specular 162
init object parameters, EnviroBitmapMate-
rial class
bitmap 152
enviroMap 152
mode 152
reflectiveness 152
init object parameters, EnviroColorMaterial
class
blendMode 154
color 154
enviroMap 154
mode 154
reflectiveness 154
smooth 154
init object parameters, FresnelPBMaterial
bitmap 166
envMapAlpha 166
faces 166
innerRefraction 166
normalMap 166
outerRefraction 166
refractionStrength 166
targetModel 166

init object parameters, GeodesicSphere class

fractures 54
radius 54
init object parameters, HoverCamera3D
class
distance 222
maxTiltAngle 222
minTiltAngle 222
panAngle 222
steps 222
tiltAngle 222
wrapPanAngle 222
yfactor 222
init object parameters, LineSegment class
edge 56
end 57

segments 57
start 57
init object parameters, MovieMaterial class
autoUpdate 146
interactive 146
lockH 146
lockW 146
movie 146
transparent 146
init object parameters, PhongBitmapMate-
rial class
bitmap 158
shininess 158
specular 158
init object parameters, PhongColorMaterial
class
color 159
shininess 159
specular 159
init object parameters, PhongMovieMaterial
class
movie 160
shininess 160
specular 160
init object parameters, PhongMultiPassMa-
terial
bitmap 165
gloss 165
normalMap 165
specular 165
specularMap 165
targetModel 165
init object parameters, PhongPBMaterial
bitmap 164
gloss 164
normalMap 164
specular 164
specularMap 164
targetModel 164
init object parameters, Plane class
height 58
segments 58
segmentsH 58
segmentsW 58
width 58
yUp 58

[376]

init object parameters, RegularPolygon class
radius 59
sides 59
subdivision 59
yUp 59
init object parameters, RoundedCube class
cubeMaterials 60
cubicmapping 60
depth 60
faces 60
height 60
radius 60
subdivision 60
width 60
init object parameters, ShadingColorMate-
rial class
alpha 157
ambient 156
cache 157
color 156
diffuse 156
specular 157
init object parameters, Sphere class
radius 65
segmentsH 65
segmentsW 65
yUp 65
init object parameters, TargetCamera3D
class
target 220
init object parameters, Torus class
radius 67
segmentsR 67
segmentsT 67
tube 67
yUp 67
init object parameters, TransformBitmap-
Material class
bitmap 144
globalProjection 144
offsetX 144
offsetY 144
projectionVector 144
rotation 144
scaleX 144
scaleY 144
throughProjection 144

transform 144
init object parameters, Triangle class
edge 68
yUp 68
init object parameters, WhiteShadingBit-
mapMaterial class
bitmap 155
shininess 155
init object parameters, WireColorMaterial
material
alpha 139
color 139
wirecolor 139
init objects
issues 202-204
initPlane() function 57,131
initPointLight() function 132
initRegularPolygon() function 58
initRoundedCube() function 60
initScene() function 21, 41, 42,73, 95, 133,
179, 215, 228, 314
initSeaTurtle() function 61, 63
initSkybox() function 62, 63
initSkybox6() function 63
initSphere() function 64, 131, 138
initTorus() function 67,131
initTriangle() function 68
initTrident() function 69
initUI() function 19, 21, 133, 314
innerRefraction init object parameter, Fres-
nelPBMaterial 166
interactive init object parameter, MovieMa-
terial class 146
Interactive MovieMaterial material 148
INTERSECTING_OBJECTS property 108
INTERSECTING_OBJECTS renderer 112
isometric projection 212

K

kernels 121

keyCode property 135
Kmz class 197

KMZ format 197

L

LatheExtrusion class 293
level of detail 345, 347

[377]

Life initializer 263
light materials
about 154
Dot3BitmapMaterial 160
PhongBitmapMaterial 157
PhongColorMaterial 158
PhongMovieMaterial 159
ShadingColorMaterial 155
WhiteShadingBitmapMaterial 154
lights
about 122
ambient lights 122
directional lights 122
point lights 122
LinearExtrusion class 291
LineSegment class
about 56
init object parameters 56
load() function 179, 183,184
loaded model
converting, to ActionScript class 204-206
Loader3D.parse 203
Loader3D class 187
Loader3D constructor 204
Loader3DEvent object 183
Loader3D object 184
LoaderCube constructor 203
loadMD2() function 366
loadTextures() function 184
LocalAxisMovement 75
local coordinate system. See local space
local space 75-77
lockH init object parameter, MovieMaterial
class 146
lockW init object parameter, MovieMaterial
class 146
LODODbject class 345
lookAt() function 288
lookOffset property, SpringCam class 224
loop init object parameter, AnimatedBit-
mapMaterial class 147

mappingType init object parameter 49
mass property, SpringCam class 224

materials
about 117
animated materials 145
applying 127-137
basic materials 137
bitmap materials 141
composite materials 149
Dot3BitmapMaterial 122
Dot3BitmapMaterialF10 122
light materials 154
PhongBitmapMaterial 122
PhongColorMaterial 122
PhongMovieMaterial 122
PhongMultiPassMaterial 122
PhongPBMaterial 122
Pixel Bender materials 161
resource management 118
ShadingColorMaterial 122
shading techniques 123
WhiteShadingBitmapMaterial 122
MaterialsDemo applyColorMaterial() func-
tion 120
MaterialsDemo applyWireColorMaterial()
function 120
MaterialsDemo class 120, 127
matrices 89
Max 336
Max3DS class 191
maxblur property 252
maxColor init object parameter, DepthBit-
mapMaterial class 151
maxColor parameter 150
maximum frame rate
setting 337
MaxPolyFilter 348
maxZ init object parameter, DepthBitmap-
Material class 151
maxZ parameter 149, 325
MD2
about 180
embedded file, loading 180-182
external file, loading 183, 184
Md2 constructor 204
MD2EmbeddedDemo 180
Md2 parse() function 204
measurements
AFPS 336

[378]

FPS 336
Max 336
MESHES 336
MS 336
RAM 336
R ELEMENTS 336
SWF FR 336
T ELEMENTS 336
Mesh constructor 204
MESHES 336
Mesh material property 138
MilkShape
3D models, exporting from 176
minColor init object parameter, DepthBit-
mapMaterial class 151
minColor parameter 149
minTiltAngle parameter, HoverCamera3D
class 222
minZ init object parameter, DepthBitmap-
Material class 151
minZ parameter 149, 324
Mip-mapping 338
mode init object parameter, EnviroBitmap-
Material class 152
mode init object parameter, EnviroColorMa-
terial class 154
model formats, Away3D
about 360
Collada format 360
graphical representation 360, 361
loading time, measuring 361-367
Quake2 MD2 format 360
selecting 360
monster 186
Mouse3DEvent MOUSE_OVER event 230
Mouse3DEvent. ROLL_OVER event 231
Mouse3DEvent string constant
MOUSE_DOWN 226
MOUSE_MOVE 225
MOUSE_OUT 226
MOUSE_OVER 225
MOUSE_UP 226
ROLL_OUT 226
ROLL_OVER 226
mouseButtonDown property 221
MouseEevent3D.MOUSE_OUT event 342
MouseEvent3D.MOUSE_OVER event 342

MouseEvent3D class
properties 226
mouse events, Away3D 225
mouse position
projecting, into scene 231-240
Move3D action 264
moveBackward() function 216
moveForward() function 77,216
movePivot() function 86
moveSphere() function 304, 305
movie init object parameter, AnimatedBit-
mapMaterial class 147
movie init object parameter, MovieMaterial
class 146
movie init object parameter, PhongMovie-
Material class 160
MovieMaterial material
about 145
init object parameters 146
MS 336

N

nesting
about 92
example 93, 94
NestingDemo class 94
newMaterial variable 138
normalMap init object parameter, CubicEn-
vMapPBMaterial 168
normalMap init object parameter, Dot3Bit-
mapMaterial class 161
normalMap init object parameter, Dot3Bit-
mapMaterialF10 162
normalMap init object parameter, Fres-
nelPBMaterial 166
normalMap init object parameter, Phong-
MultiPassMaterial 165
normalMap init object parameter, PhongPB-
Material 164
normal mapping, shading techniques
about 124,125
benefits 124

(0

Object3D class 18, 316
Object3D constructor 204

[379]

ObjectConatiner3D object 341
ObjectContainer3D class 73
ObjectContainer3D constructor 204
ObjectContainer3D object 186, 324
objects
positioning, in 3D scene 25
OB]J file format
about 200
embedded file, loading 200
external file, loading 201, 202
offscreen rendering
about 349, 350
demonstrating 350
employing 350
implementing 350-359
OffscreenRenderingDemo
creating 350
offset init object parameter 292
offsetX init object parameter, TransformBit-
mapMaterial class 144
offsetY init object parameter, TransformBit-
mapMaterial class 144
Ogre 189
Omega3D initializer 264
onComplete parameter 306
onEnterFrame() function 20, 42, 89, 97, 134,
149, 221, 238, 316, 329, 330, 337
onKeyDown() function 217
onKeyUp() function 42,134, 315
onLoadSuccess() function 184, 188, 199
onMouseDown() function 217, 236
onMouseOut() function 236
onMouseOver() function 236, 344
onMouseUp() function 236
onRenderComplete() function 329
OpenCollada exporter
about 178
URL 178
OrthogonalLens class 212
outerRefraction init object parameter, Fres-
nelPBMaterial 166
OwnCanvasDemo 312
ownCanvas property 312, 341 106

P

painter's algorithm 100
panAngle 221

panAngle parameter, HoverCamera3D class
222
parameters, SkyBox6 class
material 64
parameters, Skybox class
back 63
down 63
front 63
left 63
right 63
up 63
parameters, Trident class
len 69
showLetters 69
parameters, WireframeMaterial material
thickness 140
wireAlpha 140
wirecolor 140
parent coordinate system. See also parent
space 73,74
parse() function 181
Particle3D class 259
particleContainer property 258
particlesRemoved() function 260
particle system
about 255
Away3D Stardust initializer, creating 256,
257
Away3D Stardust particle renderer, creat-
ing 258-260
implementing 255, 256
Stardust emitter, creating 261-265
PathAlignModifier class 277
PathAlignModifier object 283, 284
Path class 277
PathCommand.LINE constant 282
PathCommand class 277
PathCommand constructor 282
PathCommands objects 281
Path constructor 289
PathDebug object 281
PathExtrusion class
about 288
demonstrating 288
Path object 289
PathSegment objects 289
PerspectiveLens class 210

[380]

PhongBitmapMaterial material
about 122,157
init object parameters 158
PhongColorMaterial material
about 122,158
init object parameters 159
PhongMovieMaterial material
about 122,159
init object parameters 160
PhongMultiPassMaterial material
about 122,164
init object parameters 164
PhongPBMaterial material
about 122,162,163
init object parameters 164
phong shading, shading techniques 126
pitch() function 87
Pixel Bender 121, 335
Pixel Bender materials
about 161
CubicEnvMapPBMaterial 167, 168
Dot3BitmapMaterialF10 161, 162
FresnelPBMaterial 165, 166
PhongMultiPassMaterial 164
PhongPBMaterial 162, 164
Pixel Bender Shaders
applying 320
implementing 121
Plane3D class 236
Plane3D getIntersectionLineNumbers()
function 239
Plane class
about 57
init object parameters 58
PointLight3D class 122
pointLight property 130
Position3D initializer 263
positionOffset property, SpringCam class
224
position property
coordinate systems 78
Prefab
about 205
download link 205
primitive 3D objects
common init object properties 45
cone 46,47

creating 39-44

cube 47,49

cylinder 51

geodesic sphere 52, 53

grid plane 54, 55

LineSegment 56

plane 57

RegularPolygon 58

RoundedCube 59

sea turtle 60

skybox 62, 63

skybox6 63

sphere 64

torus 66

triangle 67

trident 68
PrimitivesDemo class 40
profile 288
projectionVector init object parameter,

TransformBitmapMaterial class 144

properties, MouseEvent3D class

ctrlKey 227

elementVO 227

material 227

object 227

sceneX 227

sceneY 227

sceneZ 227

screenX 226

screenY 226

screenZ 226

shiftKey 227

uv 227

view 227
public properties, SpringCam class

damping 223

lookOffset 224

mass 224

positionOffset 224

stiffness 223

target 223
pushback property 104
pushfront property 103

Q

QuadrantRenderer 325

[381]

R

RAM 336
recenter init object parameter 295
recenter parameter 292
RectangleClipping class 339
RectangleClipping constructor 339
reflectiveness init object parameter, Enviro-
BitmapMaterial class 152
reflectiveness init object parameter, Enviro-
ColorMaterial class 154
refractionStrength init object parameter,
FresnelPBMaterial 166
RegularPolygon class
about 58
init object parameters 59
R ELEMENTS 336
removeCurrentPrimitive() function 43, 44
removeLights() function 132
removeOnMouseDown() function 237
removeOnMouseMove() function 237
removeOnMouseOut() function 237
removeOnMouseOver() function 237
removeOnMouseUp() function 237
removeOnRollOut() function 237
removeOnRollOver() function 237
removePrimitive() function 130
render() function 259
Render class 108
Renderer class 108
renderer init object parameter 108
RenderersDemo application 109, 110
RenderersPerformanceDemo application
112,113, 115
Render Session object 326
repeat init object parameter, BitmapMate-
rial class 142
resource management
about 118
embedded resources 118
external resources 118
roll() function 87
ROLL_OVER/ROLL_OUT
MOUSE_OVER / MOUSE_OUT, diffentiat-
ing between 227-231
Rotation3D initializer 264

rotation init object parameter, Transform-
BitmapMaterial class 144
rotation property
coordinate systems 78
rotationX property 71
rotationY property 71
rotationZ property 71
RoundedCube class
about 59
init object parameters 60

S

ScaleCurve action 265
scale property
coordinate systems 79
scaleX init object parameter, TransformBit-
mapMaterial class 144
scaleY init object parameter, TransformBit-
mapMaterial class 144
scene
sorting 100-103
Scene3D class 73
scenePivotPoint property 87
screenZOffset init object parameter 357
screenZOffset property 104, 105
SeaTurtle class 95,189 61
segments 38
selectedMesh property 344
selectedObject property 233, 238
selectedObject variable 238
set() function 257
setupText() function 278
ShaderFilter class 312
shaders 121
ShadingColorMaterial material
about 122,155
init object parameters 156
shading techniques
about 123
environment mapping 125
flat shading 126
normal mapping 124, 125
phong shading 126
texture mapping 123
shininess init object parameter, Dot3Bit-
mapMaterial class 161

[382]

shininess init object parameter, Dot3Bit-
mapMaterialF10 162
shininess init object parameter, PhongBit-
mapMaterial class 158
shininess init object parameter, Phong-
ColorMaterial class 159
shininess init object parameter, PhongMov-
ieMaterial class 160
shininess init object parameter, WhiteShad-
ingBitmapMaterial class 155
showAnchors property 281
showNormals init object parameter, Bit-
mapMaterial class 143
SinglePoint3D class 263
Sketch-Up
3D models, exporting from 176
SkinExtrude 3D object 300
SkinExtrusion 3D object 302
SkinExtrusion class 297
SkinExtrusionDemo application 297
Skyboxb class
about 63
parameters 64
Skybox class
about 62, 63
parameters 63
smooth init object parameter, BitmapMate-
rial class 142
smooth init object parameter, EnviroColor-
Material class 154
sorting order
adjusting 103
ownCanvas property 106
pushback property 104
pushfront property 103
screenZOffset property 104, 105
sourceBitmapData parameter 331
source parameter 128
sourceRect parameter 331
specular init object parameter, Dot3Bitmap-
Material class 161
specular init object parameter, Dot3Bitmap-
MaterialF10 162
specular init object parameter, PhongBit-
mapMaterial class 158
specular init object parameter, PhongColor-
Material class 159

specular init object parameter, PhongMov-
ieMaterial class 160
specular init object parameter, PhongMulti-
PassMaterial 165
specular init object parameter, PhongPBMa-
terial 164
specular init object parameter, Shading-
ColorMaterial class 157
specularMap init object parameter, Phong-
MultiPassMaterial 165
specularMap init object parameter, Phong-
PBMaterial 164
Sphere 3D object 27
Sphere class
about 64
init object parameters 65
Sphere class constructor 72
SphereDemo
running 28
running, in Adobe Flash Builder 28
running, in Adobe Flash CS4 28
running, in Adobe Flex Builder 28
running, in FlashDevelop 28
SphereDemo class 26
SphereDemo constructor 26
SphereShell class 263
SphericalLens class 210, 211
Spin3D action 265
SpringCam class
about 223
public properties 223
spring camera 223
Sprite3D 35-37
Sprite3D class
about 242
example 242-244
implementing 242
Sprite3DDemo class 242
Sprite3D object 257
sprite classes
about 241
DepthOfFieldSprite 241
DirectionalSprite 241
Sprite3D 241
SpriteSession class 326
Stardust
about 256

[383]

URL 256
stardust.initializers package 256
StarDustDemo 265
Stardust emitter

creating 261-265
Stardust Initializer3D class 256
StarDustSparksEmitter class 262
static models

3DS 190

ASE 197

AWD 193

KMZ 197

OBJ 200
Stats object 336
statsPanel property 336
SteadyClock class 262
step() function 266
steps parameter, HoverCamera3D class 222
stiffness property, SpringCam class 223
subdivisions parameter 325
SWF FR 336
SWF frameRate meta tag 337
swfvector 269

T

T2 application 298
target camera 219
TargetCamera3D class
about 219
init object parameters 220
target init object parameter 219
targetModel init object parameter, CubicEn-
vMapPBMaterial 168
targetModel init object parameter, Fres-
nelPBMaterial 166
targetModel init object parameter, Phong-
MultiPassMaterial 165
targetModel init object parameter, Phong-
PBMaterial 164
target property, SpringCam class 223
T ELEMENTS 336
terrain
creating, with SkinExtrusion class 297-301
terrain surface height
reading, with ElevationReader Class 302-
306

TextExtrusion class 288
TextField3D class 271
TextField3D constructor 272
TextField object 134, 314
TextField text property 138
TextureLoader class 127
TextureLoader object 170
TextureLoadQueue addItem() function 170
TextureLoadQueue class 127
about 169
using, for loading multiple external re-
sources 169, 171
texture mapping, shading techniques 123
textures
about 117
BitmapFileMaterial 169
differentiating, with materials 117
loading, from external resources 168
loading, TextureLoadQueue used 169, 170
TextWarpingDemo class 277
the init object parameters, GridPlane class
height 55
segments 55
segmentsH 55
segmentsW 55
width 55
yUp 55
thickness init object parameter, Wirefram-
eMaterial class 140
throughProjection init object parameter,
TransformBitmapMaterial class 144
throughScreenVector property 233
ticksPerCall constructor parameter 262
tiltAngle parameter, HoverCamera3D class
222
TortoiseSVN
about 9
downloading 9
installing 9, 10
Torus class
about 66
init object parameters 67
trace() function 228
traceLevels() function 304
TransformBitmapMaterial material
about 143
init object parameters 144

[384]

transform init object parameter, Transform-
BitmapMaterial class 144

transform matrix 89
transform property

coordinate systems 79
transparent init object parameter, MovieMa-

terial class 146

triangle caching 341-344
TriangleCachingDemo application 342
Triangle class

about 67

init object parameters 68
Trident class

about 68

parameters 69
tweening

about 89

example application 90, 91
TweeningDemo 90
TweenLite

about 89

downloading 89
TweenlLite class 90
tweenToRandomPosition() function 91

U

UniformRandom class 263

url init object parameter, BitmapFileMate-
rial 169

UV coordinates 38, 39

\"

vase
creating, with LatheExtrusion class 293,
294, 295
Vector3D objects 289
VectorText class 271
Velocity3D initializer 263
View3D class 336
View3D constructor 108
View3D renderer property 325 109
ViewportClippingDemo application 340
viewport output
scaling 340

viewport size
reducing 339
Vizzy Flash Tracer 205

w

wallPoints array 292
walls
creating, with LinearExtrusion class 291,
292
WhiteShadingBitmapMaterial material
about 122,154
init object parameters 155
wireAlpha init object parameter, Wirefram-
eMaterial class 140
wirecolor init object parameter 119
wireColor init object parameter, BitmapMa-
terial class 142
wirecolor init object parameter, WireColor-
Material class 139
wirecolor init object parameter, Wirefram-
eMaterial class 140
WireColorMaterial material
about 117,137
applying 137
init object parameters 139
WireframeMaterial material
about 139
parameters 140
world space 72
wrapPanAngle parameter, HoverCamera3D
class 222
wumedia package 269

Y

yaw() function 87
yfactor parameter, HoverCamera3D class
222

Y4

z-Sorting 100

z-sorting 107

z depth 100

ZDepthFilter 348
ZoomFocusLens class 210

[385]

open source

community experience distilled

PUBLISHING

Thank you for buying
Away3D 3.6 Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

[open source

community experience distilled

PUBLISHING

)

Unity 3D Game Development
by Example

Unity 3D Game Development by
Example Beginner’s Guide
ISBN: 978-1-849690-54-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1. Build fun games using the free Unity 3D game
engine even if you’ve never coded before

2. Learn how to “skin” projects to make totally
different games from the same file - more
games, less effort!

3. Deploy your games to the Internet so that your
friends and family can play them

4. Packed with ideas, inspiration, and advice for
your own game design and development

Papervision3D Essentials
ISBN: 978-1-847195-72-2 Paperback: 428 pages

Create interactive Papervision 3D applications with
stunning effects and powerful animations

1. Build stunning, interactive Papervision3D
applications from scratch

2. Export and import 3D models from
Autodesk 3ds Max, SketchUp and Blender to
Papervision3D

3. In-depth coverage of important 3D concepts
with demo applications, screenshots and
example code.

4. Step-by-step guide for beginners and
professionals with tips and tricks based on the
authors’ practical experience

Please check www.PacktPub.com for information on our titles

